DROP: a DROught Probabilistic near-real time monitoring tool

Author(s):  
Marco Turco ◽  
Sonia Jerez ◽  
Markus Donat ◽  
Andrea Toreti ◽  
Sergio M. Vicente-Serrano ◽  
...  

<p>Accurate and timely information of evolving drought conditions is crucial to take early actions and alleviate their impacts. A number of drought datasets is already available. They cover the last three decades and provide data in near-real time (using different sources), but they are all "deterministic" (i.e. single realisation), and data partly differ between them.  Here we first evaluate the quality of long-term and continuous climate data for timely meteorological drought monitoring considering the Standardized Precipitation Index. Then, by applying an ensemble approach, similarly to weather/climate prediction studies, we develop DROP (DROught Probabilistic; Turco et al. 2020), a new global land gridded dataset to monitor meteorological drought that gathers an ensemble of observation-based datasets providing near-real time estimates with associated uncertainty. This approach makes the most of the available information and brings it to the end-users. DROP, publicly available at https://drop.shinyapps.io/DROP/, is operationally updated every monthly and provides drought information in near-real time, i.e., up to the previous month. The high-quality and probabilistic information provided by DROP is useful for monitoring applications, and may help to develop global policy decisions on adaptation priorities in alleviating drought impacts, especially in countries where meteorological monitoring is still challenging.</p><p> </p><p>References</p><p>Turco M, Jerez S, Donat M, Toreti M, Vicente-Serrano S M, Doblas-Reyes, F J. (2020). A global probabilistic dataset for monitoring meteorological droughts. Bulletin of the American Meteorological Society. Under review.</p><p> </p><p>Acknowledgments</p><p>M.T. has received funding from the Spanish Ministry of Science, Innovation and Universities through the project PREDFIRE (RTI2018-099711-J-I00).</p><p> </p>

2020 ◽  
Vol 101 (10) ◽  
pp. E1628-E1644
Author(s):  
Marco Turco ◽  
Sonia Jerez ◽  
Markus G. Donat ◽  
Andrea Toreti ◽  
Sergio M. Vicente-Serrano ◽  
...  

AbstractAccurate and timely drought information is essential to move from postcrisis to preimpact drought-risk management. A number of drought datasets are already available. They cover the last three decades and provide data in near–real time (using different sources), but they are all “deterministic” (i.e., single realization), and input and output data partly differ between them. Here we first evaluate the quality of long-term and continuous climate data for timely meteorological drought monitoring considering the standardized precipitation index. Then, by applying an ensemble approach, mimicking weather/climate prediction studies, we develop Drought Probabilistic (DROP), a new global land gridded dataset, in which an ensemble of observation-based datasets is used to obtain the best near-real-time estimate together with its associated uncertainty. This approach makes the most of the available information and brings it to the end users. The high-quality and probabilistic information provided by DROP is useful for monitoring applications, and may help to develop global policy decisions on adaptation priorities in alleviating drought impacts, especially in countries where meteorological monitoring is still challenging.


2009 ◽  
Vol 48 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
Steven M. Quiring

Abstract Drought is a complex phenomenon that is difficult to accurately describe because its definition is both spatially variant and context dependent. Decision makers in local, state, and federal agencies commonly use operational drought definitions that are based on specific drought index thresholds to trigger water conservation measures and determine levels of drought assistance. Unfortunately, many state drought plans utilize operational drought definitions that are derived subjectively and therefore may not be appropriate for triggering drought responses. This paper presents an objective methodology for establishing operational drought definitions. The advantages of this methodology are demonstrated by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas. Results indicate that using subjectively derived operational drought definitions may lead to over- or underestimating true drought severity. Therefore, it is more appropriate to use an objective location-specific method for defining operational drought thresholds.


2013 ◽  
Vol 17 (6) ◽  
pp. 2359-2373 ◽  
Author(s):  
E. Dutra ◽  
F. Di Giuseppe ◽  
F. Wetterhall ◽  
F. Pappenberger

Abstract. Vast parts of Africa rely on the rainy season for livestock and agriculture. Droughts can have a severe impact in these areas, which often have a very low resilience and limited capabilities to mitigate drought impacts. This paper assesses the predictive capabilities of an integrated drought monitoring and seasonal forecasting system (up to 5 months lead time) based on the Standardized Precipitation Index (SPI). The system is constructed by extending near-real-time monthly precipitation fields (ECMWF ERA-Interim reanalysis and the Climate Anomaly Monitoring System–Outgoing Longwave Radiation Precipitation Index, CAMS-OPI) with monthly forecasted fields as provided by the ECMWF seasonal forecasting system. The forecasts were then evaluated over four basins in Africa: the Blue Nile, Limpopo, Upper Niger, and Upper Zambezi. There are significant differences in the quality of the precipitation between the datasets depending on the catchments, and a general statement regarding the best product is difficult to make. The generally low number of rain gauges and their decrease in the recent years limits the verification and monitoring of droughts in the different basins, reinforcing the need for a strong investment on climate monitoring. All the datasets show similar spatial and temporal patterns in southern and north-western Africa, while there is a low correlation in the equatorial area, which makes it difficult to define ground truth and choose an adequate product for monitoring. The seasonal forecasts have a higher reliability and skill in the Blue Nile, Limpopo and Upper Niger in comparison with the Zambezi. This skill and reliability depend strongly on the SPI timescale, and longer timescales have more skill. The ECMWF seasonal forecasts have predictive skill which is higher than using climatology for most regions. In regions where no reliable near-real-time data is available, the seasonal forecast can be used for monitoring (first month of forecast). Furthermore, poor-quality precipitation monitoring products can reduce the potential skill of SPI seasonal forecasts in 2 to 4 months lead time.


2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2020 ◽  
Vol 33 (9) ◽  
pp. 3635-3661 ◽  
Author(s):  
Jonathan Spinoni ◽  
Paulo Barbosa ◽  
Edoardo Bucchignani ◽  
John Cassano ◽  
Tereza Cavazos ◽  
...  

AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.


2019 ◽  
Vol 11 (4) ◽  
pp. 1323-1338 ◽  
Author(s):  
Modeste Meliho ◽  
Abdellatif Khattabi ◽  
Guy Jobbins ◽  
Fathallah Sghir

Abstract Located in the mid-west of Morocco, the Tensift watershed shelters the Takerkoust dam, which provides a part of the water used for irrigation of the N'fis agricultural area, which is an important irrigated area of the Tensift watershed. This study deals with the impact of droughts on water inflows to the Takerkoust dam and how the water shortage caused by droughts affects agricultural production in the N'Fis area. The standardized precipitation index (SPI) was used to illustrate the temporal evolution of drought periods. The trend observed on data showed that the Tensift watershed experienced a succession of droughts and humid periods of varying intensities. Periods of drought have negatively affected water inflows to the Takerkoust dam, and therefore the amount of water allocated to agricultural irrigation. Years that experienced droughts showed a restriction of more than 50% of water volume planned for irrigation. During periods of water scarcity, farmers reduce or completely avoid irrigation of annual crops to save water for irrigation of perennial crops. The water shortage for irrigation has led in some cases to a drop of up to 100% of the surface allocated to the production of annual crops.


2009 ◽  
Vol 48 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Bradfield Lyon ◽  
Lareef Zubair ◽  
Vidhura Ralapanawe ◽  
Zeenas Yahiya

Abstract In regions of climatic heterogeneity, finescale assessment of drought risk is needed for policy making and drought management, mitigation, and adaptation. The relationship between drought relief payments (a proxy for drought risk) and meteorological drought indicators is examined through a retrospective analysis for Sri Lanka (1960–2000) based on records of district-level drought relief payments and a dense network of 284 rainfall stations. The standardized precipitation index and a percent-of-annual-average index for rainfall accumulated over 3, 6, 9, and 12 months were used, gridded to a spatial resolution of 10 km. An encouraging correspondence was identified between the spatial distribution of meteorological drought occurrence and historical drought relief payments at the district scale. Time series of drought indices averaged roughly over the four main climatic zones of Sri Lanka showed statistically significant (p < 0.01) relationships with the occurrence of drought relief. The 9-month cumulative drought index provided the strongest relationships overall, although 6- and 12-month indicators provided generally similar results. Some cases of appreciable drought without corresponding relief payments could be attributed to fiscal pressures, as during the 1970s. Statistically significant relationships between drought indicators and relief payments point to the potential utility of meteorological drought assessments for disaster risk management. In addition, the study provides an empirical approach to testing which meteorological drought indicators bear a statistically significant relationship to drought relief across a wide range of tropical climates.


2018 ◽  
Vol 66 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Miriam Fendeková ◽  
Tobias Gauster ◽  
Lívia Labudová ◽  
Dana Vrablíková ◽  
Zuzana Danáčová ◽  
...  

Abstract Several quite severe droughts occurred in Europe in the 21st century; three of them (2003, 2012 and 2015) hit also Slovakia. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) were used for assessment of meteorological drought occurrence. The research was established on discharge time series representing twelve river basins in Slovakia within the period 1981–2015. Sequent Peak Algorithm method based on fixed threshold, three parametric Weibull and generalized extreme values distribution GEV, factor and multiple regression analyses were employed to evaluate occurrence and parameters of hydrological drought in 2003, 2011–2012 and 2015, and the relationship among the water balance components. Results showed that drought parameters in evaluated river basins of Slovakia differed in respective years, most of the basins suffered more by 2003 and 2012 drought than by the 2015 one. Water balance components analysis for the entire period 1931–2016 showed that because of continuously increasing air temperature and balance evapotranspiration there is a decrease of runoff in the Slovak territory.


2021 ◽  
Vol 13 (23) ◽  
pp. 4730
Author(s):  
Malak Henchiri ◽  
Tertsea Igbawua ◽  
Tehseen Javed ◽  
Yun Bai ◽  
Sha Zhang ◽  
...  

Droughts are one of the world’s most destructive natural disasters. In large regions of Africa, droughts can have strong environmental and socioeconomic impacts. Understanding the mechanism that drives drought and predicting its variability is important for enhancing early warning and disaster risk management. Taking North and West Africa as the study area, this study adopted multi-source data and various statistical analysis methods, such as the joint probability density function (JPDF), to study the meteorological drought and return years across a long term (1982–2018). The standardized precipitation index (SPI) was used to evaluate the large-scale spatiotemporal drought characteristics at 1–12-month timescales. The intensity, severity, and duration of drought in the study area were evaluated using SPI–12. At the same time, the JPDF was used to determine the return year and identify the intensity, duration, and severity of drought. The Mann-Kendall method was used to test the trend of SPI and annual precipitation at 1–12-month timescales. The pattern of drought occurrence and its correlation with climate factors were analyzed. The results showed that the drought magnitude (DM) of the study area was the highest in 2008–2010, 2000–2003, and 1984–1987, with the values of 5.361, 2.792, and 2.187, respectively, and the drought lasting for three years in each of the three periods. At the same time, the lowest DM was found in 1997–1998, 1993–1994, and 1991–1992, with DM values of 0.113, 0.658, and 0.727, respectively, with a duration of one year each time. It was confirmed that the probability of return to drought was higher when the duration of drought was shorter, with short droughts occurring more regularly, but not all severe droughts hit after longer time intervals. Beyond this, we discovered a direct connection between drought and the North Atlantic Oscillation Index (NAOI) over Morocco, Algeria, and the sub-Saharan countries, and some slight indications that drought is linked with the Southern Oscillation Index (SOI) over Guinea, Ghana, Sierra Leone, Mali, Cote d’Ivoire, Burkina Faso, Niger, and Nigeria.


Sign in / Sign up

Export Citation Format

Share Document