Flow regime variation in Arctic rivers

Author(s):  
Nasim Fazel ◽  
Ali Torabi Haghighi ◽  
Kabir Rasouli ◽  
Bjørn Kløve

<p>Arctic rivers’ flow regime has changed under climate change and its consequences on melting glaciers, thawing permafrost, and precipitation patterns. Reservoirs, hydro-power sites, and water diversions have also changed flow regimes in the Arctic. The flow regime alteration in the Arctic rivers has a strong influence on the conservation and sustainability of the native biodiversity of the riverine ecosystem. The main objective of this paper is to evaluate changes in the (1) magnitude of monthly stream flows, (2) magnitude and duration of annual maxima and minima flows, (3) timing of annual maxima and minima, (4) frequency and duration of high and low pulses, and (5) rate and frequency of daily flows in seven major Arctic Rivers. The analyses provide an important basis to characterize and understand the influence of climate change and anthropogenic activities on the flow regimes in the Arctic. Streamflow observations were obtained from the outlet of the Lena, Yenisei, Kolyma, Ob (Russia), Yukon (USA and Canada), Mackenzie (Canada), and Tana (Norway and Finland) rivers in this study. These rivers are main freshwater suppliers for Arctic Ocean. Of these, five have been regulated and two are considered pristine rivers. In addition, the impact of 16 reservoirs on flow regime in the headwaters and tributaries of Lena, Yenisei, Mackenzie, and Kolyma were evaluated. The annual flow showed an increasing trend in all rivers and with a statistically significant level in Yenisei, Lena, and Mackenzie. Our results also indicated that changes in the observed flow regimes at the outlet stations vary from low to incipient level. Out of 16 reservoirs that were analyzed for flow regimes changes, construction of Krasnoyarsk and Shushenskaya dams on the Yenisei River showed the highest impact on flow regime and flow regime alteration was classified as severe in this river.</p>

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 648
Author(s):  
Stanislav Myslenkov ◽  
Vladimir Platonov ◽  
Alexander Kislov ◽  
Ksenia Silvestrova ◽  
Igor Medvedev

The recurrence of extreme wind waves in the Kara Sea strongly influences the Arctic climate change. The period 2000–2010 is characterized by significant climate warming, a reduction of the sea ice in the Arctic. The main motivation of this research to assess the impact of climate change on storm activity over the past 39 years in the Kara Sea. The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model WAVEWATCH III is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height (SWH) for the whole period amounts to 9.9 m. The average long-term SWH for the ice-free period does not exceed 1.3 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017. It is shown that trends in the storm activity of the Kara Sea are primarily regulated by the ice. Analysis of the extreme storm events showed that the Pareto distribution is in the best agreement with the data. However, the extreme events with an SWH more than 6‒7 m deviate from the Pareto distribution.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2014 ◽  
Vol 11 (2) ◽  
pp. 293-308 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
Y. Aksenov ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.


Author(s):  
Sanna Masud

Climate change is increasing air and soil temperatures in the Arctic, likely enhancing microbial activity. Consequently, increased decomposition rates of soil organic matter and increasing nutrient supply to tundra vegetation can be expected. The impacts of experimental warming and fertilization on growth have been investigated by studying the availability of macronutrients such as N, P and C. However, other   macronutrients such as S, Ca, Mg, K, and micronutrients such as Fe, Mn, Cu, and Zn have received little research attention to determine their function, biogeochemical cycling, and effect on vegetation growth in response to warming. This study investigated the impact of experimental warming responses on availability and accumulation of the latter nutrients in the principal plant species located in mesic birch hummock tundra near Daring Lake, Northwest Territories in the Canadian Low Arctic Tundra. Plants were sampled in 2011 from the replicated summer greenhouse treatment that was established in 2004. In response to warming, the principal evergreen shrub (Rhododendron) had the most enhanced growth, followed by the deciduous shrub (Birch). Since the total plant pools of these nutrients were also enhanced in the evergreen, my results strongly suggest that availability of these nutrients was not limiting growth. By contrast, the birch total plant nutrient pools were not enhanced and significant decreases in Mg, S, and K leaf concentrations were observed, suggesting that these elements may be limiting birch growth. Together, our results suggest that plant growth response to climate change in the low Arctic may depend on previously overlooked nutrient elements, and that deciduous shrub growth may be constrained relative to the evergreen response as the arctic climate warms.


1995 ◽  
Vol 41 (137) ◽  
pp. 51-60 ◽  
Author(s):  
Thomas L. Mote ◽  
Mark R. Anderson

AbstractA simple microwave-emission model is used to simulate 37 GHz brightness temperatures associated with snowpack-melt conditions for locations across the Greenland ice sheet. The simulated values are utilized as threshold values and compared to daily, gridded SMMR and SSM/I passive-microwave data, in order to reveal regions experiencing melt. The spatial extent of the area classified as melting is examined on a daily, monthly and seasonal (May-August) basis for 1979–91. The typical seasonal cycle of melt coverage shows melt beginning in late April, a rapid increase in the melting area from mid-May to mid-July, a rapid decrease in melt extent from late July through mid-August, and cessation of melt in late September. Seasonal averages of the daily melt extents demonstrate an apparent increase in melt coverage over the 13 year period of approximately 3.8% annually (significant at the 95% confidence interval). This increase is dominated by statistically significant positive trends in melt coverage during July and August in the west and southwest of the ice sheet. We find that a linear correlation between microwave-derived melt extent and a surface measure of ablation rate is significant in June and July but not August, so caution must be exercised in using the microwave-derived melt extents in August. Nevertheless, knowledge of the variability of snowpack melt on the Greenland ice sheet as derived from microwave data should prove useful in detecting climate change in the Arctic and examining the impact of climate change on the ice sheet.


2005 ◽  
Vol 272 (1581) ◽  
pp. 2571-2576 ◽  
Author(s):  
S.J Kutz ◽  
E.P Hoberg ◽  
L Polley ◽  
E.J Jenkins

Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host–parasite systems, in the Arctic and globally.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2435
Author(s):  
Pengfei Shi ◽  
Jiahong Liu ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Jie Feng ◽  
...  

Climate change and anthropogenic activities do collectively lead to an alteration of the flow regime, posing a great influence upon the structure and persistence of native biotic communities within river ecosystems. The range of variability approach (RVA) method is commonly used to evaluate the flow regime alteration. However, it was reported to underestimate the degree of flow regime potentially. In this study, two new assessment methods/metrics for evaluating the process behaviors of the flow regime are developed based on Euclidean distance and dynamic time warping (DTW) distance. They are then integrated with the metric of RVA, generating two composite metrics that represent both frequency and process changes of the flow regime. The new methods/metrics were applied to identify the flow regime alteration in a typical basin in the middle reaches of the Yellow River, China. The results show that the composite metrics consistently reveal a high alteration degree of flow regime in the basin. The decreased biological integrity of fish demonstrates the reasonability of the high-level overall alteration to some degree. The updated methods enable more scientific evaluation for the complex hydrologic alteration under a changing environment.


2015 ◽  
Vol 15 (11) ◽  
pp. 6549-6559 ◽  
Author(s):  
K. M. Hansen ◽  
J. H. Christensen ◽  
C. Geels ◽  
J. D. Silver ◽  
J. Brandt

Abstract. The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990–2000) and future (2090–2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on the transport of POPs to the Arctic is moderate relative to the effect of proposed changes in emissions, which is confirmed in this study. However, the model studies do not agree on whether climate change acts to reduce or increase environmental concentrations of POPs in the Arctic, and further work is needed to resolve this matter.


Sign in / Sign up

Export Citation Format

Share Document