Plant-soil-water interactions in the tropics: using isotopes to explore environmental change implications for agriculture

Author(s):  
Josie Geris

<p>Understanding of plant water uptake and ecohydrological interactions between plants and soil water is crucial for developing effective and sustainable water use strategies, in particular for agricultural areas. To explore these questions, isotopic analyses of plant and source water provide useful tools alongside traditional techniques. Although such studies in tropical regions are less abundant, recent meta-analyses have revealed that vegetation water generally resembles that of deeper soil water sources than in temperate and cold climate regions. However, water uptake patterns from different sources can also vary in time, especially in the tropics where seasonality in precipitation and associated water availability is strong. As the distinct wet and dry seasons are expected to become more intense, this can have important implications for ecosystems and agriculture.</p><p>This presentation will bring together results from recent isotope studies on plant-soil-water interactions in tropical climate regions across the world. In particular, it will focus on system changes at the extreme ends of hydroclimatological conditions. It will also explore the implications this might have for agriculture, e.g. in terms of the sustainability of agroforestry where competition for water between co-existing vegetation might increase during dry periods, and how additional irrigation or flooding from extreme rainfall can change runoff dynamics and recharge leading to enhanced leaching of pollutants.</p>

Sociobiology ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 6071
Author(s):  
Roberta De Jesus Santos ◽  
Pavel Dodonov ◽  
Jacques Hubert C. Delabie

Conversion of natural to anthropogenic environments affects biodiversity, and the understanding of these impacts may be improved by assessing how different functional groups respond to such land conversion. We studied land conversion impacts on ant functional groups, as ants are ecologically important and respond well to various environmental changes. We hypothesized that conversion of natural to anthropogenic environments modifies the composition of functional groups, fostering generalist and opportunistic groups over specialist ones, with more responses of this type in tropical than in temperate regions. We recovered 412 papers from ISI Web of Science, of which we selected 17 studies, published between 1993 and 2018, that addressed our study’s question. We assessed whether each functional group responded positively or negatively to conversion of natural habitat into anthropogenic land uses and used Monte Carlo tests to assess significance. Ants were affected by natural habitat conversion into monoculture and polyculture and by the conversion of savannas and of tropical and subtropical forests. Land conversion affected six of the 13 functional groups assessed here. In the temperate zone, cryptic species, predators, subordinate Camponotini, cold-climate specialists and tropical-climate specialists were impaired, whereas hot-climate specialists were favored. In the tropics, land conversion negatively impacted fungus-growers and predators. In both climatic zones, several functional groups, mainly those with broad ecological niches, did not respond to land conversion. Our results corroborate that land conversion effects vary among ant functional groups and indicate that the ant fauna of temperate ecosystems may be more susceptible than that of tropical regions.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrina Nilsson-Kerr ◽  
Pallavi Anand ◽  
Philip B. Holden ◽  
Steven C. Clemens ◽  
Melanie J. Leng

AbstractMost of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of precipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone.


2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 264 ◽  
Author(s):  
Mohammad Hossein Mohammadi ◽  
Mahnaz Khataar

We developed a numerical model to predict soil salinity from knowledge of evapotranspiration rate, crop salt tolerance, irrigation water salinity, and soil hydraulic properties. Using the model, we introduced a new weighting function to express the limitation imposed by salinity on plant available water estimated by the integral water capacity concept. Lower and critical limits of soil water uptake by plants were also defined. We further analysed the sensitivity of model results to underlying parameters using characteristics given for corn, cowpea, and barley in the literature and two clay and sandy loam soils obtained from databases. Results showed that, between two irrigation events, soil salinity increased nonlinearly with decreasing soil water content especially when evapotranspiration and soil drainage rate were high. The salinity weighting function depended greatly on the plant sensitivity to salinity and irrigation water salinity. This research confirmed that both critical and lower limits (in terms of water content) of soil water uptake by plants increased with evapotranspiration rate and irrigation water salinity. Since the presented approach is based on a physical concept and well-known plant parameters, soil hydraulic characteristics, irrigation water salinity, and meteorological conditions, it may be useful in spatio-temporal modelling of soil water quality and quantity and prediction of crop yield.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


Soil Science ◽  
2004 ◽  
Vol 169 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Qiang Zuo ◽  
Lei Meng ◽  
Renduo Zhang

Sign in / Sign up

Export Citation Format

Share Document