Modelling the global biological microplastic particle sink

Author(s):  
Karin Kvale ◽  
AE Friederike Prowe ◽  
Chia-Te Chien ◽  
Angela Landolfi ◽  
Andreas Oschlies

<p>Forty percent of the plastic produced annually ends up in the ocean. What happens to the plastic after that is poorly understood, though a growing body of data suggests it is rapidly spreading throughout the ocean. The mechanisms of this spread are not straightforward for small, weakly or neutrally buoyant plastic size fractions (the microplastics), in part because they aggregate in marine snow and are consumed by zooplankton. This biological transport pathway is suspected to be a primary surface microplastic removal mechanism, but exactly how it might work in the real ocean is unknown. We search the parameter space of a new microplastic model embedded in an earth system model to show biological uptake significantly shapes global microplastic inventory and distributions, despite its being an apparently inefficient removal pathway.</p>

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Kvale ◽  
A. E. F. Prowe ◽  
C.-T. Chien ◽  
A. Landolfi ◽  
A. Oschlies

Abstract Every year, about four percent of the plastic waste generated worldwide ends up in the ocean. What happens to the plastic there is poorly understood, though a growing body of evidence suggests it is rapidly spreading throughout the global ocean. The mechanisms of this spread are straightforward for buoyant larger plastics that can be accurately modelled using Lagrangian particle models. But the fate of the smallest size fractions (the microplastics) are less straightforward, in part because they can aggregate in sinking marine snow and faecal pellets. This biologically-mediated pathway is suspected to be a primary surface microplastic removal mechanism, but exactly how it might work in the real ocean is unknown. We search the parameter space of a new microplastic model embedded in an earth system model to show that biological uptake can significantly shape global microplastic inventory and distributions and even account for the budgetary “missing” fraction of surface microplastic, despite being an inefficient removal mechanism. While a lack of observational data hampers our ability to choose a set of “best” model parameters, our effort represents a first tool for quantitatively assessing hypotheses for microplastic interaction with ocean biology at the global scale.


2020 ◽  
Author(s):  
Robert Osinski ◽  
Wieslaw Maslowski ◽  
Younjoo Lee ◽  
Anthony Craig ◽  
Jaclyn Clement-Kinney ◽  
...  

<p>The Arctic climate system is very sensitive to the state of sea ice due to its role in controlling heat and momentum exchanges between the atmosphere and the ocean. However, the representation of sea ice state, its past variability and future projections in modern Earth system models (ESMs) vary widely. One of the reasons for that is strong sensitivity of ESMs to sea ice related varying parameter space. Based on limited observations, those parameters typically have a range of possible values and / or are not constant in space and time, which is a source of model uncertainties.   </p><p>The Regional Arctic System Model (RASM) is a limited-domain fully coupled climate model used in this study to investigate sensitivity of sea ice states to limited set of parameters. It includes the atmospheric (Weather Research and Forecasting; WRF) and land hydrology (Variable Infiltration Capacity; VIC) components sharing a 50-km pan-Arctic grid. The sea ice (the version 6.0 of Los Alamos sea ice model, CICE) and ocean (Parallel Ocean Program, POP) components share a 1/12° pan-Arctic grid. In addition, a river routing scheme (RVIC) is used to represent the freshwater flux from land to ocean. All components are coupled at high frequency via the Community Earth System Model (CESM) coupler version CPL7.</p><p>We have selected four parameters out of the set evaluated by Urrego-Blanco et al. (2016) and subject to their potential impact on sea ice and coupling across the atmosphere-sea ice-ocean interface. The total of 96 sensitivity simulations have been completed with fully coupled and forced RASM configurations, varying each parameter within its respective acceptable range. Using sea ice volume as a measure of sensitivity, the thermal conductivity of snow (ksno) parameter has produced the most sensitivity, in qualitative agreement with Urrego-Blanco et al. (2016). However, using dynamics related metrics, such as sea ice drift or deformation, other parameters, i.e. controlling the sea ice roughness and frictional energy dissipation, have been shown more important. Finally, different quantitative sensitivities to the same parameter have been diagnosed between fully-coupled and forced RASM simulations, as well as compared to the stand alone sea ice results.</p>


Author(s):  
Gyundo Pak ◽  
Yign Noh ◽  
Myong-In Lee ◽  
Sang-Wook Yeh ◽  
Daehyun Kim ◽  
...  

Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
K. Kvale ◽  
A. E. F. Prowe ◽  
C.-T. Chien ◽  
A. Landolfi ◽  
A. Oschlies

AbstractGlobal warming has driven a loss of dissolved oxygen in the ocean in recent decades. We demonstrate the potential for an additional anthropogenic driver of deoxygenation, in which zooplankton consumption of microplastic reduces the grazing on primary producers. In regions where primary production is not limited by macronutrient availability, the reduction of grazing pressure on primary producers causes export production to increase. Consequently, organic particle remineralisation in these regions increases. Employing a comprehensive Earth system model of intermediate complexity, we estimate this additional remineralisation could decrease water column oxygen inventory by as much as 10% in the North Pacific and accelerate global oxygen inventory loss by an extra 0.2–0.5% relative to 1960 values by the year 2020. Although significant uncertainty accompanies these estimates, the potential for physical pollution to have a globally significant biogeochemical signal that exacerbates the consequences of climate warming is a novel feedback not yet considered in climate research.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sergey Osipov ◽  
Georgiy Stenchikov ◽  
Kostas Tsigaridis ◽  
Allegra N. LeGrande ◽  
Susanne E. Bauer ◽  
...  

AbstractSupervolcano eruptions have occurred throughout Earth’s history and have major environmental impacts. These impacts are mostly associated with the attenuation of visible sunlight by stratospheric sulfate aerosols, which causes cooling and deceleration of the water cycle. Supereruptions have been assumed to cause so-called volcanic winters that act as primary evolutionary factors through ecosystem disruption and famine, however, winter conditions alone may not be sufficient to cause such disruption. Here we use Earth system model simulations to show that stratospheric sulfur emissions from the Toba supereruption 74,000 years ago caused severe stratospheric ozone loss through a radiation attenuation mechanism that only moderately depends on the emission magnitude. The Toba plume strongly inhibited oxygen photolysis, suppressing ozone formation in the tropics, where exceptionally depleted ozone conditions persisted for over a year. This effect, when combined with volcanic winter in the extra-tropics, can account for the impacts of supereruptions on ecosystems and humanity.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
R. J. W. Brienen ◽  
L. Caldwell ◽  
L. Duchesne ◽  
S. Voelker ◽  
J. Barichivich ◽  
...  

Abstract Land vegetation is currently taking up large amounts of atmospheric CO2, possibly due to tree growth stimulation. Extant models predict that this growth stimulation will continue to cause a net carbon uptake this century. However, there are indications that increased growth rates may shorten trees′ lifespan and thus recent increases in forest carbon stocks may be transient due to lagged increases in mortality. Here we show that growth-lifespan trade-offs are indeed near universal, occurring across almost all species and climates. This trade-off is directly linked to faster growth reducing tree lifespan, and not due to covariance with climate or environment. Thus, current tree growth stimulation will, inevitably, result in a lagged increase in canopy tree mortality, as is indeed widely observed, and eventually neutralise carbon gains due to growth stimulation. Results from a strongly data-based forest simulator confirm these expectations. Extant Earth system model projections of global forest carbon sink persistence are likely too optimistic, increasing the need to curb greenhouse gas emissions.


2019 ◽  
Vol 46 (19) ◽  
pp. 10910-10917
Author(s):  
Jiang Zhu ◽  
Christopher J. Poulsen

2012 ◽  
Vol 5 (3) ◽  
pp. 2811-2842 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett

Abstract. Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


Sign in / Sign up

Export Citation Format

Share Document