The role of climate information for the urban transition towards sustainability

Author(s):  
Gaby Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable urban systems is relying heavily on useful, evidence-based climate information on urban scales. </p><p>However, many of the urban climate models and regional climate models are currently either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results show that the regional climate models simulate a difference between Berlin and its surroundings for temperature and humidity related variables. There is an increasing urban dry island in Berlin towards the end of the century, as well as an increasing urban heat island. The study shows the potential of regional climate models to provide climate change information on urban scales.</p><p>For climate information to underpin the urban transition this information will need to be put in a decision-making context. As an example, the research aims to understand connections to the health sector on how to integrate the information in order to manage e.g. the dispersion of pollen in cities, assisting in mitigating pollen allergies. The research showcases an interdisciplinary way forward to firstly produce climate information on urban scales and secondly how to connect it to city sectors in a suitable manner to underpin the transition to sustainable urban systems. </p><p> </p>

2020 ◽  
Author(s):  
Ye Tian ◽  
Klaus Fraedrich ◽  
Feng Ma

<p>Extreme events such as heat waves occurred in urban have a large influence on human life due to population density. For urban areas, the urban heat island effect could further exacerbate the heat stress of heat waves. Meanwhile, the global climate change over the last few decades has changed the pattern and spatial distribution of local-scale extreme events. Commonly used climate models could capture broad-scale spatial changes in climate phenomena, but representing extreme events on local scales requires data with finer resolution. Here we present a deep learning based downscaling method to capture the localized near surface temperature features from climate models in the Coupled Model Intercomparison Project 6 (CMIP6) framework. The downscaling is based on super-resolution image processing methods which could build relationships between coarse and fine resolution. This downscaling framework will then be applied to future emission scenarios over the period 2030 to 2100. The influence of future climate change on the occurrence of heat waves in urban and its interaction with urban heat island effect for ten most densely populated cities in China are studied. The heat waves are defined based on air temperature and the urban heat island is measured by the urban-rural difference in 2m-height air temperature. Improvements in data resolution enhanced the utility for assessing the surface air temperature record. Comparisons of urban heat waves from multiple climate models suggest that near-surface temperature trends and heat island effects are greatly affected by global warming. High resolution climate data offer the potential for further assessment of worldwide urban warming influences.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1159
Author(s):  
Igor Žiberna ◽  
Nataša Pipenbaher ◽  
Daša Donša ◽  
Sonja Škornik ◽  
Mitja Kaligarič ◽  
...  

The human population is increasing. The ongoing urbanization process, in conjunction with climate change, is causing larger environmental footprints. Consequently, quality of life in urban systems worldwide is under immense pressure. Here, the seasonal characteristics of Maribor’s urban thermal environment were studied from the perspectives of surface urban heat island (SUHI) and urban heat island (UHI) A remote sensing thermal imagery time series and in-situ measurements (stationary and mobile) were combined with select geospatial predictor variables to model this atmospheric phenomenon in its most intensive season (summer). Finally, CMIP6 climate change scenarios and models were considered, to predict future UHI intensity. Results indicate that Maribor’s UHI intensity maximum shifted from winter to spring and summer. The implemented generalized additive model (GAM) underestimates UHI intensity in some built-up parts of the study area and overestimates UHI intensity in green vegetated areas. However, by the end of the century, UHI magnitude could increase by more than 60% in the southern industrial part of the city. Such studies are of particular concern, in regards to the increasing frequency of heat waves due to climate change, which further increases the (already present) heat stress in cities across the globe.


2006 ◽  
Vol 30 (1) ◽  
pp. 73-98 ◽  
Author(s):  
Robert L. Wilby ◽  
George L.W. Perry

According to projections by the United Nations, 60% of the world’s population will reside in urban areas by 2030. Studies of the ecology of cities and ecology in cities will therefore assume increasing relevance as urban communities seek to protect and/or enhance their ecological resources. Presently, the most serious threats to wildlife include the degradation and/or loss of habitats, the introduction and spread of problem species, water pollution, unsympathetic management, and the encroachment of inappropriate development. Climate change could add to these problems through competition from exotic species, the spread of disease and pests, increased summer drought stress for wetlands and woodland, and sea-level rise threatening rare coastal habitats. Earlier springs, longer frost-free seasons, and reduced snowfall could further affect the dates of egg-laying, as well as the emergence, first flowering and health of leafing or flowering plants. Small birds and naturalized species could thrive in the warmer winters associated with the combined effect of regional climate change and enhanced urban heat island. This article reviews the range of climate-related threats to biodiversity in the aquatic, intertidal and terrestrial habitats of urban areas. London is used as a case study to illustrate potential impacts, and to contend that ‘green spaces’ in cities could be used by planners to counter climate-related threats to biodiversity, as well as to improve flood control and air quality, and reduce urban heat island effects.


Author(s):  
Sajjad Hussain SAJJAD ◽  
Nadège Blond

Global trends show that the world's population is growing with 250,000 new human beings per day, or 100 million a year. This significant growth of the population, coupled with a phenomenon of globalization and an increase in the average standard of living of individuals, first of all poses the problem of energy resources. In fact, major part of this energy, almost 96%, is produced from fossil fuels (petrol, natural gas, coal). The use of fossil fuels also poses environmental problems (pollution of water, soil, air, and all that results from it - loss of biodiversity, reduction of vital resources, etc.). Its combustion notably releases gaseous and particulate species into the atmosphere that are highly harmful to human health and ecosystems, and greenhouse gases (GHGs) that warm the climate on a global scale. The consequences of air pollution on health and associated costs are well identified. The possible consequences of climate change on our societies living in urban areas in form of development of urban heat island (UHIs) which make the cities warmer than its surrounding non-urban areas are also clearly identified. Without adaptive measures or enhancing the resilience capabilities, it further pushes us towards a very uncertain future. Other observations made on different areas across the world already show very significant impacts on the water resources (strong droughts), on the crops (lower yields) and thus on the basic food of our food chain. Another observation is that the population is concentrating more and more in the cities. Since 2007, the population of cities represents more than 50% of the world population. By 2030, this percentage is expected to exceed to 60%. Today almost 75% of total global energy is consumed in urban areas today. Favored by the dense presence of polluting activities and urban objects, very localized peaks of concentrations of a large number of harmful pollutants such as particles, nitrogen oxides and certain hydrocarbons are observed in urban atmosphere. If the reduction strategies of air pollution are not associated with significant growing urban population, it will pose even more health problems. Urbanization, through the alteration of natural land into artificial surfaces, the horizontal and vertical extension of buildings, the activities they generate, and the amount and type of energy they consume, also raises the problem of local warming of cities, the urban heat island, which tends to make cities populations even more vulnerable to climate change and air pollution. Some advantages of these urbanized spaces are to exploit: they concentrate the activities, well developed thus they can limit the needs of energy and resources through sharing; urban heat island reduces winter energy needs in the coldest countries, and increases the atmospheric mix of air pollution. Awareness of the environmental problems created by our lifestyles associated with their direct and indirect costs (present and future) is progressively increasing and regularly drives the policies to take measures to reduce the impacts of human activities and ensure the durable development of our societies. But what is a sustainable or durable future? How to qualify sustainability? Which indicators can be used? All of these questions need to be addressed quickly in order to evaluate the actions that will be taken. In transforming phase of the cities with use of modified form of buildings’ materials, space management, modes of eco mobility, alternative uses of energy etc., the research (public and private) is currently strongly mobilized to ensure technological innovation in all sectors (building, materials, mobility, informatics, etc.), which will enable us to reduce our impacts. The actors involved in spatial planning must also accelerate the integration of energy and atmospheric issues in their development projects and in particular those affecting the cities (production and distribution of energy, mobility, buildings, agriculture, waste, tourism, economic development, etc.). They must ensure that all projects lead to a drastic reduction in our energy consumption, to a better air quality that respects the health of ecosystems, to a climate protection and its effects, short and long term. Thus, the problems of the city become more and more multidisciplinary. Today the cities are a place of all issues since they welcome, and will continue to host most of the population for a long time. However, tools and knowledge in urban areas have yet to be developed, as the urban environment is complex because of its heterogeneity, and its dynamics of evolution are strongly influenced by localized sectoral policies that are not always consistent. To discuss the major issues of urban areas, an interdisciplinary conference titled “European International Conference on Transforming Urban Systems (EICTUS-2019)” was organized by Zone Atelier Environnementale Urbaine (ZAEU) from 26 – 28 June 2019 at Université de Strasbourg. The major themes of this conference were air, climate (risks, resilience, vulnerability, adaptation), energy; mobility; adaptation to climate change; urban governance, economy; public initiatives, planning, society and environment and associated risks; health and social inequalities; land cover landuse change, urban sprawl, urban forms; urban agriculture, nature in cities; sustainable urbanism and architecture; urban water and sustainability; and Smart, sustainable buildings and housing. Almost 160 abstracts were received and 108 people from 28 countries presented their work on 20 different topics as mentioned below.


2011 ◽  
Vol 50 (1) ◽  
pp. 167-184 ◽  
Author(s):  
Barbara Früh ◽  
Paul Becker ◽  
Thomas Deutschländer ◽  
Johann-Dirk Hessel ◽  
Meinolf Kossmann ◽  
...  

Abstract A pragmatic approach to estimate the impact of climate change on the urban environment, here called the cuboid method, is presented. This method allows one to simulate the urban heat load and the frequency of air temperature threshold exceedances using only eight microscale urban climate simulations for each relevant wind direction and time series of daily meteorological parameters either from observations or regional climate projections. Eight representative simulations are designed to encompass all major potential urban heat-stress conditions. From these representative simulations, the urban-heat-load conditions in any weather situation are derived by interpolation. The presented approach is applied to study possible future heat load in Frankfurt, Germany, using the high-resolution Microscale Urban Climate Model in three dimensions (MUKLIMO_3). To estimate future changes in heat-load-related climate indices in Frankfurt, climate projections from the regional climate models Max Planck Institute Regional Model (REMO), Climate Limited-Area Model (CLM), Wetterlagen-basierte Regionalisierungsmethode (WETTREG), and Statistical Regional Model (STAR) are used. These regional climate models are driven by the “ECHAM5” general circulation model and Intergovernmental Panel on Climate Change emission scenario A1B. For the mean annual number of days with a maximum daily temperature exceeding 25°C, a comparison between the cuboid method results from observed and projected regional climate time series of the period 1971–2000 shows good agreement, except for CLM for which a clear underestimation is found. On the basis of the 90% significance level of all four regional climate models, the mean annual number of days with a maximum daily temperature exceeding 25°C in Frankfurt is expected to increase by 5–32 days for 2021–50 as compared with 1971–2000.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Robert Dare

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


Sign in / Sign up

Export Citation Format

Share Document