Investigation of the geological, technical and economical obstacles for large-scale utilization of geothermal energy from Danish sandstone reservoirs

Author(s):  
Mette Olivarius ◽  
Niels Balling ◽  
Jesper P. M. Baunsgaard ◽  
Esben Dalgaard ◽  
Hanne Dahl Holmslykke ◽  
...  

<p>The Triassic–Jurassic sandstone reservoirs in the Danish subsurface at c. 1–3 km depth contain an enormous geothermal resource that is currently utilized in only three geothermal plants due to a number of geological, technical and commercial barriers. These barriers have been addressed in the GEOTHERM project funded by Innovation Fund Denmark and recommendations for overcoming the obstacles have been made. Some of the methods that are used in the oil and gas sector have successfully been introduced in the geothermal reservoir evaluations to reduce the risk associated with new exploration wells. Quantitative seismic interpretation proved capable of giving a reliable reservoir characterization with regards to estimation of porosity and sand/clay distribution. Diagenesis modelling gave good estimates of reservoir quality by utilizing the knowledge obtained about depositional environments, petrography, reservoir properties and burial history. Relationships between fluid and gas permeability have been established such that the regularly measured gas permeability can be recalculated to fluid permeability giving a better representation of the reservoir. The composition of the formation water in the three geothermal plants has been measured and used for geochemical modelling to evaluate the risk of scaling, where especially barite showed a tendency to precipitate upon cooling of the brine. Simulations of the thermal development of the reservoirs during long-term geothermal exploitation demonstrate significant heat extraction from the layers present above and below each reservoir, which ensures that only a small decrease in production temperature occurs over several decades. The regional geothermal resource estimation has been updated based on a new comprehensive 3D temperature model of the subsurface, confirming the presence of a huge geothermal resource with wide geographical extend covering most of the country. The causes of injection problems have been investigated including corrosion and scaling processes, showing that careful choice of well-lining and tubing materials besides cautious operation of plants are of utmost importance to prevent problems. A geothermal business case has been developed to give a lifetime assessment of geothermal plants including feasibility, design, drilling, construction, production and abandonment, showing that the operational costs are closely linked to the existing infrastructure and to the choices made when designing the geothermal plant. In conclusion, the new scientific results and best-practice manuals provide a significantly higher chance of success of new geothermal projects when including the recommended measures to minimize the geological uncertainties and prevent problems during drilling and production.</p>

Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


2021 ◽  
Author(s):  
Alexandre Ortiz ◽  
Charlotte Fillon ◽  
Eric Lasseur ◽  
Justine Briais ◽  
Francois Guillocheau ◽  
...  

<h3>The knowledge acquired on the exhumation of the Pyrenean chain and the evolution of the adjacent foreland basins makes this Alpine-type domain a good laboratory to better constrain a full sediment routing system in a compressive context and to apprehend the driving processes controlling the sediment routing in space and time. This integrated approach aims at enhancing our basin mastering approach as well as improving our predictions of reservoir properties for oil and gas exploration and storage.</h3><h3>This Source-to-Sink study seeks to understand the evolution of sedimentary routing from the Source (orogenic relief, craton, basin recycling) through the transfer zone (peripheral or internal to the basin) to the final sink (flexural basin, deep turbiditic margin). Within the framework of this new cartography, we propose to compile the available and newly acquired data from the S2S project (TOTAL, BRGM), over the entire peri-Pyrenean domain. We produced large scale quantitative and qualitative maps and wheeler diagrams to better observe and interpret the tectonic, climatic and surface processes impacts of the SRS behavior.</h3><h3>The maps include kinematic reconstructions of the Iberian-European-Mediterranean system, restored sequential cross-sections, history/magnitude of exhumation by thermochronology, source tracking, characterization of weathering and erosion surfaces, synthesis of the major structural accidents activity, paleogeographic reconstructions, analysis of sedimentary geometries and transport directions as well as the quantification of volumes preserved in the basins. Their interpretation is combined with a time representation along the routing system, linking classical basin wheeler diagram representation to source erosion and lithologies to obtain a continuous view on the sediment journey.</h3><h3>The time steps chosen for these 5 maps account for the different stages of tectono-sedimentary evolution of the peri-Pyrenean system at the early-orogenic, syn-orogenic and post-orogenic stages. The compilations carried out compare exhumed domains and sedimentation zones in terms of fluxes and volumes and make it possible to map the routing systems and discuss the drivers for the surface evolution during the construction/destruction cycle of an orogen.</h3><h3> </h3><h3>Research work financed and carried out as part of the BRGM-TOTAL Source-to-Sink program</h3><p> </p>


Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 94-109
Author(s):  
Valentina A. Zhemchugova ◽  
Grigoriy G. Akhmanov ◽  
Yuri V. Naumchev ◽  
Viktor V. Pankov ◽  
Evgenia E. Karnyushina

The junction zone of the Caspian syneclise, the Russian Plate and the Pre-Ural trough is characterized by a complex structure. It has been studied in some detail during large-scale geological, geophysical, and drilling operations in the search for mineral deposits. Subsalt deposits are associated with the main prospects for the growth of hydrocarbon reserves in this region. This makes it important to rethink the available data and conduct scientific analysis to identify patterns of formation of sedimentary complexes and an integrated assessment of their possible hydrocarbon productivity by means of sedimentation modeling. The structure and history of the formation of five large sedimentary complexes: the Ordovician-Lower Devonian, the Central Middle Devonian, the Frasnian-Tournaisian, the Visean-Upper Carboniferous, and the Permian are considered in detail. For each complex, a structural-formational position and sedimentation conditions are determined, which should determine the hydrocarbon productivity of local objects. The revealed relationship between the conditions of carbonate sediments accumulation and their potential reservoir properties served as the basis for forecasting the productivity of regional natural reservoirs. The paper presents a generalized model of the formation of subsalt strata and the forecast of the spatial distribution of different facies deposits, which play the role of accumulating and preserving strata. The results obtained are applicable in the practice of oil and gas exploration in the region


2021 ◽  
Vol 1-2 (183-184) ◽  
pp. 60-75
Author(s):  
Nataliya Radkovets ◽  
Kostyantyn Hrygorchuk ◽  
Yuriy Koltun ◽  
Volodymyr Hnidets ◽  
Ihor Popp ◽  
...  

The objective of this work was to study the environments and processes of ancient sedimentation in the epi- and mesopelagic basins of the Carpathian-Black Sea region and to clarify the conditions of oil and gas basins formation within the study region as well as the main aspects of hydrocarbon generation. The burial history of the basins, some aspects of their fluid regime, issues of lithogenetic record, features of transformation of sedimentary basins into the rock-formation basins and the development of the latter during the Phanerozoic are considered. The spatial and temporal peculiarities of the evolution of epi-mesopelogic systems and their influence on the formation of oil- and gas-bearing strata within the Carpathian-Black Sea region have been studied. It has been established that in the sedimentary basins of the Carpathian-Black Sea continental margin of the Tethys Ocean during the long geological history the different intensity structural and morphological changes took place: changes of the subsidence rate of the basin bottom, inversion uplifts, sedimentation pauses, deformation of the sedimentary fill. This was reflected both in the peculiarities of the development of sedimentary environments and in the processes of substance differentiation with the formation of certain post-sedimentary mineral-structural parageneses. It was proved that discrete processes of differentiated compaction and defluidization of sediments cause a number of deformation phenomena, which can be reflected in the features of the morphology of the sedimentary basin bottom, influencing the nature of sediment transportation and accumulation. On the basis of the conducted investigations a number of practical results were obtained which will allow forming new approaches to criteria of hydrocarbons prospecting, in particular the lithophysical aspect which is concentrated on the reservoir properties of rocks; sedimentary reconstructions and the diversity of cyclicity of the studied sediments as a factor of the establishment of prospective areas, reconstruction of the burial history, which provides an information on the state of transformation of organic matter and hydrocarbons, and therefore the range of prospective depths for oil and gas occurrence.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ziya Zhang ◽  
Kun Zhang ◽  
Yan Song ◽  
Zhenxue Jiang ◽  
Shu Jiang ◽  
...  

Similar to North America, China has abundant shale resources. Significant progress has been made in the exploration and exploitation of shale gas in China since 2009. As the geological theory of unconventional oil and gas was proposed, scientists have started researching conditions for shale gas preservation. The shale roof and floor sealing and the shale self-sealing are the critical objects of such research, which, however, are still in the initial stage. This article studies the formation mechanism of shale roof and floor sealing and shale self-sealing by taking marine shales from Member I of the upper Ordovician Wufeng Formation–lower Longmaxi Formation in the upper Yangtze region as the research object. Analyses were performed on the TOC content, mineral composition, and porosity, as well as the FIB-SEM, FIB-HIM, and gas permeability experiments on the core samples collected from the marine shales mentioned above. The conclusions are as follows: for the sealings of shale roof and floor, the regional cap rocks, roof, and floor provide sealing for shales due to physical property differences. For the self-sealing of shales, the second and third sub-members of Member I of the Wufeng Formation–Longmaxi Formation mainly develop clay mineral pores which are dominated by macropores with poor connectivity, while the first sub-member of Member I of the Wufeng Formation–Longmaxi Formation mainly develops organic-matter pores, which are dominated by micropores and mesopores with good connectivity. Owing to the connectivity difference, the second and third sub-members provide sealing for the first sub-member, while the methane adsorption effect of shales can inhibit large-scale shale gas migration as it decreases the gas permeability; thus, the organic-rich shales from the first sub-member of Member I of the Wufeng Formation–Longmaxi Formation provides sealing for itself.


Baltica ◽  
2020 ◽  
Vol 33 (2) ◽  
pp. 109-127
Author(s):  
Halyna Havryshkiv ◽  
Natalia Radkovets

The Paleocene Yamna Formation represents one of the main oil-bearing sequences in the Ukrainian part of the Carpathian petroleum province. Major oil accumulations occur in the Boryslav-Pokuttya and Skyba Units of the Ukrainian Carpathians. In the great part of the study area, the Yamna Formation is made up of thick turbiditic sandstone layers functioning as reservoir rocks for oil and gas. The reconstructions of depositional environments of the Paleocene flysch deposits performed based on well log data, lithological and petrographic investigations showed that the terrigenous material was supplied into the sedimentary basin from two sources. One of them was located in the northwest of the study area and was characterized by the predominance of coarse-grained sandy sediments. Debris coming from the source located in its central part showed the predominance of clay muds and fine-grained psammitic material. The peculiarities of the terrigenous material distribution in the Paleocene sequence allowed singling out four areas with the maximum development (> 50% of the total section) of sandstones, siltstones and mudstones. The performed petrographic investigations and the estimation of reservoir properties of the Yamna Formation rocks in these four areas allowed establishing priority directions of further exploration works for hydrocarbons in the study territory.


2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.


Author(s):  
A. S. Roslyakova ◽  
A. G. Kalmykov ◽  
G. A. Kalmykov ◽  
R. A. Khamidullin ◽  
N. I. Korobova ◽  
...  

The paper presents a study of the structure and reservoir properties of rocks of the Bazhenov formation in the sections of three wells located in different structural zones of the Priobskoye field. It is shown that the porosity of the samples varies from 0.02% to 6.95%, the absolute gas permeability of the rocks reaches 1.364 mD. It is established that the collectors in the Bazhenov formation are confined to silicite-radiolarites (possessing porosity associated with the leaching of radiolarian shells) and kerogen-clay-siliceous rock and kerogen-clay silicite (porosity is associated with the release of space between the clay-siliceous matrix and kerogen by ripening organic matter). The following secondary processes influenced the formation of voids in these lithotypes: recrystallization of radiolarians and local warming up.


Sign in / Sign up

Export Citation Format

Share Document