Upper Carboniferous-Permian tectonics in Central Mediterranean: an updated revision

Author(s):  
Giancarlo Molli ◽  
Andrea Brogi ◽  
Alfredo Caggianelli ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

<p>An updated revision of the upper Carboniferous-Permian tectonics recorded in Corsica, Calabria and Tuscany is here proposed. We combine our and literature data to document how the sedimentary, tectono-metamorphic and magmatic upper Carboniferous-Permian record fits with a regional-scale tectonic scenario characterized by trascurrent fault systems associated with stretched crustal domains in which extensional regional structures, magmatism and transtensional basins developed. In Corsica, altogether with well-known effusive and intrusive Permian magmatism, the alpine S.Lucia nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, with many similarities to the Ivrea-Verbano zone. The two distinct Mafic and Leucogranitic complexes, which characterize this crustal domain are juxtposed by an oblique-slip shear zone named as S.Lucia Shear Zone. Structural and petrological data document interaction between magmatism, metamorphism and shearing during Permian in the c. 800-400 °C temperature range. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section is exposed. The lower crust portion of such section is mainly made up of granulites and migmatitic paragneisses with subordinate marbles and metabasites. The mid-crustal section includes an up to 13 km thick sequence of granitoids of tonalitic to granitic composition, emplaced between 306 and 295 Ma and progressively deformed during retrograde extensional shearing to end with a final magmatic activity between 295 and 277 Ma, consisting in the injection of shallower dykes in a transtensional regime. The section is completed by an upper crustal portion mainly formed by a Paleozoic succession deformed as a low-grade fold and thrust belt, locally overlaying medium-grade paragneiss units, and therefore as a whole reminiscent of the external/nappe zone domains of Sardinia Hercynian orogen. In Tuscany we document, how late Carboniferous/Permian shallow marine to continental sedimentary basins characterized by unconformity and abrupt change in sedimentary facies (coal-measures, red fanglomerate deposits) and acid magmatism well fit a transtensional setting with a mid-crustal shear zone linked with a system of E-W trending (in present orientation) upper crust splay faults. We will frame the whole dataset in a regional framework of first-order transcurrent shear zones network which includes a westernmost S.Lucia Shear Zone and an easternmost East Tuscan Shear Zone, with intervening crustal domains in which extensional to transtensional shearing occured.</p>

2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Giancarlo Molli ◽  
Andrea Brogi ◽  
Alfredo Caggianelli ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

AbstractA revision of late Palaeozoic tectonics recorded in Tuscany, Calabria and Corsica is here presented. We propose that, in Tuscany, upper Carboniferous-Permian shallow-marine to continental sedimentary basins, characterized by unconformities and abrupt changes in sedimentary facies, coal-measures, red fanglomerate deposits and felsic magmatism, may be related with a transtensional setting where upper-crustal splay faults are linked with a mid-crustal shear zone. The remnants of the latter can be found in the deep-well logs of Pontremoli and Larderello-Travale in northern and southern Tuscany respectively. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section is exposed, where the lower-crustal portion mainly includes granulites and migmatitic paragneisses, together with subordinate marbles and metabasites. The mid-crustal section, up to 13 km-thick, includes granitoids, tonalitic to granitic in composition, emplaced between 306 and 295 Ma. They were progressively deformed during retrograde extensional shearing, with a final magmatic activity, between 295 ± 1 and 277 ± 1 Ma, when shallower dykes were emplaced in a transtensional regime. The section is completed by an upper crustal portion, mainly formed by a Palaeozoic sedimentary succession deformed as a low-grade fold and thrust belt, and locally overlaying medium-grade paragneiss units. As a whole, these features are reminiscent of the nappe zone domains of the Sardinia Variscan Orogen. In Corsica, besides the well-known effusive and intrusive Permian magmatism of the “Autochthonous” domain, the Alpine Santa Lucia Nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, exhibiting many similarities to the Ivrea Zone. The distinct Mafic and Granitic complexes characterizing this crustal domain are juxtaposed through an oblique-slip shear zone named Santa Lucia Shear Zone. Structural and petrological data witness the interaction between magmatism, metamorphism and retrograde shearing during Permian, in a temperature range of c. 800–400 °C. We frame the outlined paleotectonic domains within a regional-scale, strain–partitioned, tectonic setting controlled by a first-order transcurrent/transtensional fault network that includes a westernmost fault (Santa Lucia Fault) and an easternmost one (East Tuscan Fault), with intervening crustal domains affected by extensional to transtensional deformation. As a whole, our revision allows new suggestions for a better understanding of the tectonic framework and evolution of the Central Mediterranean during the late Palaeozoic.


2020 ◽  
Vol 191 ◽  
pp. 2 ◽  
Author(s):  
Dominique Chardon ◽  
Ousmane Bamba ◽  
Kalidou Traoré

Shear zones of the Paleoproterozoic Eburnean accretionary Orogen (West African craton) are investigated by means of large-scale structural mapping. Regional scale (10-100 km) mapping was based on the aeromagnetic survey of Burkina Faso and craton-scale (1000 km) mapping on a compilation of fabric data. At both scales, shear zones are arranged as an anastomosed transpressional network that accommodated distributed shortening and lateral flow of the orogenic lithosphere between the converging Kénéma-Man and Congo Archean provinces. Structural interference patterns at both scales were due to three-dimensional partitioning of progressive transpressional deformation and interactions among shear zones that absorbed heterogeneities in the regional flow patterns while maintaining the connectivity of the shear zone network. Such orogen-scale kinematic patterns call for caution in using the deformation phase approach without considering the “bigger structural picture” and interpreting displacement history of individual shear zones in terms of plate kinematics. The West African shear zone pattern is linked to that of the Guiana shield through a new transatlantic correlation to produce an integrated kinematic model of the Eburnean-Transamazonian orogen.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Pierre Mueller ◽  
Matteo Maino ◽  
Silvio Seno

This paper reports the results of a field-based structural investigation of a well-exposed paleo-accretionary prism, which experienced complex deformation in a low-grade metamorphic setting. Field analyses focused on the description of structural fabrics, with the main emphasis upon parameters like the orientation, style and kinematics of foliations, folds and shear zones. We address the research to the south-westernmost part of the Alpine chain, the Ligurian Alps, where, despite their origin as turbidite sequences deposited into the closing Alpine Tethys Ocean, the Helminthoid Flysch Nappes are presently distributed in the outer part of the chain, above the foreland. The new dataset highlights different deformation patterns related to the different spatial distribution of the flysch units. This regional-scale partitioning of strain is hence associated with progressive deformation within a two-stage geodynamic evolution. Correlations among the different orogenic domains allow the proposal of a kinematic model that describes the motion of the Helminthoid Flysch from the inner to the outer part of the orogen, encompassing the shift from subduction- to collision-related Alpine geodynamic phases.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nicole Sequeira ◽  
Abhijit Bhattacharya

Abstract Curvilinear steep shear zones originate in different tectonic environments. In the Chottanagpur Gneiss Complex (CGC), the steeply dipping, left-lateral and transpressive Early Neoproterozoic Hundru Falls Shear Zone (HFSZ) with predominantly north-down kinematics comprises two domains, e.g., an arcuate NW-striking (in the west) to W-striking (in the east) domain with gently plunging stretching lineation that curves into a W-striking straight-walled domain with down-dip lineation. The basement-piercing HFSZ truncates a carapace of flat-lying amphibolite facies paraschist and granitoid mylonites, and recumbently folded anatectic gneisses. The carapace—inferred to be a midcrustal regional-scale low-angle detachment zone—structurally overlies an older basement of Early Mesoproterozoic anatectic gneisses intruded by Mid-Mesoproterozoic/Early Neoproterozoic granitoids unaffected by the Early Neoproterozoic extensional tectonics. The mean kinematic vorticity values in the steep HFSZ-hosted granitoids computed using the porphyroclast aspect ratio method are 0.74–0.83 and 0.51–0.65 in domains with shallow and steep lineations, respectively. The granitoid mylonites show a chessboard subgrain microstructure, but lack evidence for suprasolidus deformation. The timing relationship between the two domains is unclear. If the two HFSZ domains were contemporaneous, the domain of steep lineations with greater coaxial strain relative to the curvilinear domain formed due to strain partitioning induced by variations in mineralogy and/or temperature of the cooling granitoid plutons. Alternately, the domain of gently plunging lineations in the HFSZ was a distinct shear zone that curved into a subsequent straight-walled shear zone with steeply plunging lineation due to a northward shift in the convergence direction during deformation contemporaneous with the Early Neoproterozoic accretion of the CGC and the Singhbhum Craton.


2021 ◽  
Author(s):  
Timothy Armitage ◽  
Robert Holdsworth ◽  
Robin Strachan ◽  
Thomas Zach ◽  
Diana Alvarez-Ruiz ◽  
...  

<p>Ductile shear zones are heterogeneous areas of strain localisation which often display variation in strain geometry and combinations of coaxial and non-coaxial deformation. One such heterogeneous shear zone is the c. 2 km thick Uyea Shear Zone (USZ) in northwest Mainland Shetland (UK), which separates variably deformed Neoarchaean orthogneisses in its footwall from Neoproterozoic metasediments in its hanging wall (Fig. a). The USZ is characterised by decimetre-scale layers of dip-slip thrusting and extension, strike-slip sinistral and dextral shear senses and interleaved ultramylonitic coaxially deformed horizons. Within the zones of transition between shear sense layers, mineral lineations swing from foliation down-dip to foliation-parallel in kinematically compatible, anticlockwise/clockwise-rotations on a local and regional scale (Fig. b). Rb-Sr dating of white mica grains via laser ablation indicates a c. 440-425 Ma Caledonian age for dip-slip and strike-slip layers and an 800 Ma Neoproterozoic age for coaxial layers. Quartz opening angles and microstructures suggest an upper-greenschist to lower-amphibolite facies temperature for deformation. We propose that a Neoproterozoic, coaxial event is overprinted by Caledonian sinistral transpression under upper greenschist/lower amphibolite facies conditions. Interleaved kinematics and mineral lineation swings are attributed to result from differential flow rates resulting in vertical and lateral extrusion and indicate regional-scale sinistral transpression during the Caledonian orogeny in NW Shetland. This study highlights the importance of linking geochronology to microstructures in a poly-deformed terrane and is a rare example of a highly heterogeneous shear zone in which both vertical and lateral extrusion occurred during transpression.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.0cf6ef44e5ff57820599061/sdaolpUECMynit/12UGE&app=m&a=0&c=d96bb6db75eed0739f2a6ee90c9ad8fd&ct=x&pn=gepj.elif&d=1" alt=""></p>


2021 ◽  
Author(s):  
Matteo Simonetti ◽  
Rodolfo Carosi ◽  
Chiara Montomoli ◽  
Salvatore Iaccarino

<p>Paleogeographic reconstruction and recognition of the tectono-metamorphic evolution of ancient orogenic belt is often complex. The combination of an adequate amount of paleomagnetic, metamorphic, structural and geochronological data is necessary. Fundamental data derive from the study of regional-scale shear zones, that can be directly observed, by combining detailed field work with structural analysis, microstructural analysis and petrochronology. The Southern European Variscan Belt in the Mediterranean area was partially overprinted by the Alpine cycle (Stampfli and Kozur, 2006) and correlations are mainly based on lithological similarities. Little attention has been paid to the compatibility of structures in the dispersed fragments. A main debate is the connection among the Corsica-Sardinia Block (CSB), the Maures-Tanneron Massif (MTM) and the future Alpine External Crystalline Massifs (ECM) (Stampfli et al., 2002; Advokaat et al., 2014) and if these sectors were connected by a network of shear zones of regional extent, known as the East Variscan Shear Zone (EVSZ).</p><p>We present a multidisciplinary study of shear zones cropping out in the CSB (the Posada-Asinara shear zone; Carosi et al., 2020), in the MTM (the Cavalaire Fault; Simonetti et al., 2020a) and in the ECM (the Ferriere-Mollières and the Emosson-Berard shear zones; Simonetti et al., 2018; 2020b).</p><p>Kinematic and finite strain analysis allowed to recognize a transpressional deformation, with a major component of pure shear and a variable component of simple shear, coupled with general flattening deformation. Syn-kinematic paragenesis, microstructures and quartz c-axis fabrics revealed that shear deformation, in all the studied sectors, occurred under decreasing temperature starting from amphibolite-facies up to greenschist-facies. A systematic petrochronological study (U-Th-Pb on monazite collected in the sheared rocks) was conducted in order to constrain the timing of deformation. We obtained ages ranging between ~340 Ma and ~320 Ma. Ages of ~340-330 Ma can be interpreted as the beginning of the activity of the EVSZ along its older branches while ages of ~320 Ma, obtained in all the shear zones, demonstrate that they were all active in the same time span.</p><p>The multidisciplinary approach revealed a similar kinematics and tectono-metamorphic evolution of the studied shear zones contributing to better constrain the extension and timing the EVSZ and to strength the paleogeographic reconstructions of the Southern Variscan belt during Late Carboniferous time, with important implications on the evolution of the Mediterranean area after the Late Paleozoic. This case study demonstrates how paleogeographic reconstructions could benefit from datasets obtained from large-scale structures (i.e., shear zones) that can be directly investigated.</p><p> </p><p>Advokaat et al. (2014). Earth and Planetary Science Letters 401, 183–195</p><p> </p><p>Carosi et al. (2012). Terra Nova 24, 42–51</p><p> </p><p>Carosi and Palmeri (2002). Geological Magazine 139.</p><p> </p><p>Carosi et al. (2020). Geosciences 10, 288.</p><p> </p><p>Simonetti et al (2020a). International Journal of Earth Sciences 109, 2261–2285</p><p> </p><p>Simonetti et al. (2020b). Tectonics 39</p><p> </p><p>Simonetti et al. (2018). International Journal of Earth Sciences. 107, 2163–2189</p><p> </p><p>Stampfli and Kozur (2006). Geological Society, London, Memoirs 32, 57–82</p><p> </p><p>Stampfli et al. (2002). Journal of the Virtual Explorer 8, 77</p>


2021 ◽  
Author(s):  
Meixia Lyu ◽  
Shuyun Cao

<p><strong>Abstracts:</strong></p><p>Graphitic carbon-bearing rocks can occur in low- to high-grade metamorphic units. In low-grade matamorphic rocks, graphitic carbon is often associated with brittle fault gouge whereas in middle- to high-grade metamorphic rocks, graphitic carbon commonly occurs in marble, schist or paragneiss. Previous studies showed that carbonaceous material gradually ordered from the amorphous stage, e.g. graphitization, is mainly controlled by increasing thermal metamorphism and has a good correlation with the metamorphic temperature. Besides, this ordered process is irreversible and the resulting structure is not affected by late metamorphism. Subsequently, the degree of graphitization is believed to be a reliable indicator of peak temperature conditions in the metamorphic rock. In this contribution, based on detailed field observations, the variably deformed and metamorphosed graphitic gneisses to phyllites, located within the footwall and hanging-walls unit of the Cenozoic Ailaoshan-Red River strike-slip shear zone are studied. According to lithological features and temperature determined by Raman spectra of carbonaceous material, these graphitic rocks and deformation fabrics are divided into three types. Type I is represented by medium–grade metamorphism and strongly deformed rocks with an average temperature of 509 °C and a maximum temperature of 604 °C. Type II is affected by low-grade metamorphism and deformed rocks with an average temperature of 420 °C. Type III is affected by lower–grade metamorphism and occurs in weakly deformed/undeformed rocks with an average temperature of 350 °C. Slip–localized micro–shear zone and laterally continuous or discontinuous slip planes constituted by graphitic carbon aggregates are developed in Types I and II. The electron back–scattered diffraction (EBSD) lattice preferred orientation (LPO) patterns of graphitic carbon grains were firstly observed in comparison with LPO patterns of quartz and switch from basal <a>, rhomb <a> to prism <a> slip systems, which indicate increasing deformation temperatures. According to the graphitic slip–planes, micro–shear zones and mylonitic foliation constituted by graphitic carbon minerals, we also propose that the development of fine–grained amorphous carbon plays an important role in rheological weakening of the whole rock during progressive ductile shearing.</p><p><strong>Key Words:</strong> graphitic carbon, strain localization, graphitic thermometry, slip–localized micro–shear zone, rheological weakening</p>


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 767-788 ◽  
Author(s):  
Giancarlo Molli ◽  
Luca Menegon ◽  
Alessandro Malasoma

Abstract. The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle–ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode) interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure–temperature (P–T) conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa) during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD), and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow-slip structures. Our case study represents, therefore, a fossil example of association of fault structures related to stick-slip strain accommodation during subduction of continental crust.


2007 ◽  
Vol 44 (7) ◽  
pp. 925-946 ◽  
Author(s):  
Jerry C DeWolfe ◽  
Bruno Lafrance ◽  
Greg M Stott

The Beardmore–Geraldton belt consists of steeply dipping, intercalated panels of metavolcanic and metasedimentary rocks along the southern margin of the granite–greenstone Wabigoon subprovince in the Archean Superior Province, Ontario. It is an important past-producing gold belt that includes classic epigenetic iron-formation-hosted deposits near Geraldton and turbidite-hosted deposits, north of Beardmore. The Brookbank gold prospect belongs to a third group of related gold deposits that formed along dextral shear zones localized at contacts between panels of metasedimentary and metavolcanic rocks. The Brookbank prospect occurs along a steeply dipping shear zone at the contact between footwall polymictic conglomerate and hanging-wall calc-alkaline arc basalt. Early during shearing the basalt acted as a structural and chemical trap that localized brittle deformation, veining, and gold deposition, ankerite–sericite–chlorite–epidote–pyrite alteration, and the replacement of metamorphic magnetite and ilmenite by gold-bearing pyrite. This produced a low grade (≤5 g/t Au) ankerite-rich alteration zone that extends up to 20 m into the hanging-wall basalt. Later during shearing, gold was deposited within higher grade (≤20 g/t Au) quartz–orthoclase–pyrite alteration zones superimposed on the wider ankerite-rich alteration zone. Auriferous quartz–carbonate veins oriented clockwise and counter-clockwise to the shear zone walls are folded and boudinaged, respectively, consistent with dextral slip along the shear zone. A key finding of the study is that different groups of gold deposits in the belt, including epigenetic iron formation gold deposits near Geraldton, formed during post-2690 Ma regional dextral transpression across the belt.


2000 ◽  
Vol 37 (9) ◽  
pp. 1245-1257 ◽  
Author(s):  
N Culshaw ◽  
T Brown ◽  
P H Reynolds ◽  
J WF Ketchum

The polyphase Kanairiktok shear zone (KNSZ) separates gneissic rocks of the Archean Nain craton from their reworked equivalents in the Paleoproterozoic Kaipokok domain of the Makkovik Province. In its early stages, the KNSZ bounded the Kaipokok domain as it was thermally softened by 1895-1870 Ma Andean-type magmatism, accompanied by dextral oblique convergence and resultant penetrative deformation. The amphibolite-facies tectonite that developed in this stage was widely overprinted by greenschist-facies mylonite. Laserprobe and spectral 40Ar/39Ar ages of recrystallized and porphyroclastic muscovite, from the greenschist-facies mylonite and from muscovite in a syntectonic quartz vein, bracket the age of deformation between 1740 and 1710 Ma with the best estimate at 1715 Ma. These ages are similar to those of A-type granites within the Makkovik Province and amphibole cooling ages from the province interior. Together with the petrological similarity of the greenschist-facies mylonite to localized low-grade shear zones elsewhere in the Makkovik Province, they are suggestive of a widespread, lithosphere-scale event. The 40Ar/39Ar data do not provide good constraints on the early activity of the KNSZ. However, preservation of relationships between granitoid sheets correlated with the 1895-1870 Ma Island Harbour Bay plutonic suite and early fabrics imply that the granites were emplaced syntectonically in the KNSZ. Thus, the KNSZ was a major, long-lived structure in the Makkovik Province that decoupled events in the reactivated Nain craton from an inert cratonic region.


Sign in / Sign up

Export Citation Format

Share Document