Relative dispersion in a model of stratified upper-ocean turbulence

Author(s):  
Stefano Berti ◽  
Guillaume Lapeyre

<div> <div> <div> <p>Turbulence in the upper ocean in the submesoscale range (scales smaller than the deformation radius) plays an important role for the heat exchange with the atmosphere and for oceanic biogeochemistry. Its dynamical features are thought to strongly depend on the seasonal cycle and the associated mixed-layer instabilities. The latter are particularly relevant in winter and are responsible for the fomation of energetic small scales that are not confined in a thin layer close to the surface, as those arising from mesoscale-driven processes, but extend over the whole depth of the mixed layer. The knowledge of the transport properties of oceanic flows at depth, however, is still limited, due to the complexity of performing measurements below the surface. Improving this knowledge is essential to understand how the surface dynamics couple with those of the ocean interior.</p> <p>By means of numerical simulations, here we explore the dispersion properties of turbulent flows in a quasi-geostrophic model system made of two coupled fluid layers (aimed to represent the mixed layer and the thermocline) with different stratification. Such a model has been previously shown to give rise to dynamics that compare well with observations of wintertime submesoscale flows. We examine the horizontal relative dispersion of Lagrangian tracers by means of both fixed-time and fixed-scale statistical indicators, at the surface and at depth, in the different dynamical regimes occurring in the presence, or not, of a mixed layer. The results indicate that, when mixed-layer instabilities are present, the dispersion regime is local (meaning governed by eddies of the same size as the particle separation distance) from the surface down to depths comparable with that of the interface with the thermocline. By contrasting this picture with what happens in the absence of a mixed layer, when dispersion quickly becomes nonlocal (i.e. dominated by the transport by the largest eddies) as a function of depth, we identify the origin of this behavior in the existence of fine-scale energetic structures due to mixed-layer instabilities. Finally, we discuss the effect of vertical shear on the tracer spreading process and address the correlation between the dispersion properties at the surface and in deeper layers, which is relevant to assess the possibility of inferring the dynamical features of deeper flows from the more accessible surface ones.</p> </div> </div> </div>

2021 ◽  
Author(s):  
Stefano Berti ◽  
Guillaume Lapeyre

<p>Oceanic motions at scales larger than few tens of km are quasi-horizontal due to seawater stratification and Earth’s rotation and are characterized by quasi-two-dimensional turbulence. At scales around 300 km (in the mesoscale range), coherent vortices contain most of the kinetic energy in the ocean. At scales around 10 km (in the submesoscale range) the flow is populated by smaller eddies and filamentary structures associated with intense gradients (e.g. of temperature), which play an important role in both physical and biogeochemical budgets. Such small scales are found mainly in the weakly stratified mixed layer, lying on top of the more stratified thermocline. Submesoscale dynamics should strongly depend on the seasonal cycle and the associated mixed-layer instabilities. The latter are particularly relevant in winter and are responsible for the generation of energetic small scales that are not trapped at the surface, as those arising from mesoscale-driven processes, but extend down to the thermocline. The knowledge of the transport properties of oceanic flows at depth, which is essential to understand the coupling between surface and interior dynamics, however, is still limited.</p><p>By means of numerical simulations, we explore Lagrangian pair dispersion in turbulent flows from a quasi-geostrophic model consisting in two coupled fluid layers (representing the mixed layer and the thermocline) with different stratification. Such a model has been previously shown to give rise to both meso and submesoscale instabilities and subsequent turbulent dynamics that compare well with observations of wintertime submesoscale flows. We focus on the identification of different dispersion regimes and on the possibility to relate the characteristics of the spreading process at the surface and at depth, which is relevant to assess the possibility of inferring the dynamical features of deeper flows from the experimentally more accessible (e.g. by satellite altimetry) surface ones.</p><p>Using different statistical indicators, we find a clear transition of dispersion regime with depth, which is generic and can be related to the statistical features of the turbulent flows. The spreading process is local (namely, governed by eddies of the same size as the particle separation distance) at the surface. In the absence of a mixed layer it rapidly changes to nonlocal (meaning essentially driven by the largest eddies) at small depths, while in the opposite case this only occurs at larger depths, below the mixed layer. We then identify the origin of such behavior in the existence of fine-scale energetic structures due to mixed-layer instabilities. We further discuss the effect of vertical shear and address the properties of the relative motion of subsurface particles with respect to surface ones. In the absence of a mixed layer, the properties of the spreading process are found to rapidly decorrelate from those at the surface, but the relation between the surface and subsurface dispersion appears to be largely controlled by vertical shear. In the presence of mixed-layer instabilities, instead, the statistical properties of dispersion at the surface are found to be a good proxy for those in the whole mixed layer.</p>


2013 ◽  
Vol 43 (2) ◽  
pp. 382-401 ◽  
Author(s):  
Julien Jouanno ◽  
Frédéric Marin ◽  
Yves du Penhoat ◽  
Jean-Marc Molines

Abstract A regional numerical model of the tropical Atlantic Ocean and observations are analyzed to investigate the intraseasonal fluctuations of the sea surface temperature at the equator in the Gulf of Guinea. Results indicate that the seasonal cooling in this region is significantly shaped by short-duration cooling events caused by wind-forced equatorial waves: mixed Rossby–gravity waves within the 12–20-day period band, inertia–gravity waves with periods below 11 days, and equatorially trapped Kelvin waves with periods between 25 and 40 days. In these different ranges of frequencies, it is shown that the wave-induced horizontal oscillations of the northern front of the mean cold tongue dominate the variations of mixed layer temperature near the equator. But the model mixed layer heat budget also shows that the equatorial waves make a significant contribution to the mixed layer heat budget through modulation of the turbulent cooling, especially above the core of the Equatorial Undercurrent (EUC). The turbulent cooling variability is found to be mainly controlled by the intraseasonal modulation of the vertical shear in the upper ocean. This mechanism is maximum during periods of seasonal cooling, especially in boreal summer, when the surface South Equatorial Current is strongest and between 2°S and the equator, where the presence of the EUC provides a background vertical shear in the upper ocean. It applies for the three types of intraseasonal waves. Inertia–gravity waves also modulate the turbulent heat flux at the equator through vertical displacement of the core of the EUC in response to equatorial divergence and convergence.


2010 ◽  
Vol 40 (11) ◽  
pp. 2381-2400 ◽  
Author(s):  
Tobias Kukulka ◽  
Albert J. Plueddemann ◽  
John H. Trowbridge ◽  
Peter P. Sullivan

Abstract Langmuir circulation (LC) is a turbulent upper-ocean process driven by wind and surface waves that contributes significantly to the transport of momentum, heat, and mass in the oceanic surface layer. The authors have previously performed a direct comparison of large-eddy simulations and observations of the upper-ocean response to a wind event with rapid mixed layer deepening. The evolution of simulated crosswind velocity variance and spatial scales, as well as mixed layer deepening, was only consistent with observations if LC effects are included in the model. Based on an analysis of these validated simulations, in this study the fundamental differences in mixing between purely shear-driven turbulence and turbulence with LC are identified. In the former case, turbulent kinetic energy (TKE) production due to shear instabilities is largest near the surface, gradually decreasing to zero near the base of the mixed layer. This stands in contrast to the LC case in which at middepth range TKE production can be dominated by Stokes drift shear. Furthermore, the Eulerian mean vertical shear peaks near the base of the mixed layer so that TKE production by mean shear flow is elevated there. LC transports horizontal momentum efficiently downward leading to an along-wind velocity jet below LC downwelling regions at the base of the mixed layer. Locally enhanced vertical shear instabilities as a result of this jet efficiently erode the thermocline. In turn, enhanced breaking internal waves inject cold deep water into the mixed layer, where LC currents transport temperature perturbation advectively. Thus, LC and locally generated shear instabilities work intimately together to facilitate strongly the mixed layer deepening process.


Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

2013 ◽  
Vol 43 (9) ◽  
pp. 1862-1879 ◽  
Author(s):  
Leonel Romero ◽  
Yusuke Uchiyama ◽  
J. Carter Ohlmann ◽  
James C. McWilliams ◽  
David A. Siegel

Abstract Knowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.


2003 ◽  
Vol 59 (5) ◽  
pp. 619-627 ◽  
Author(s):  
Hirotaka Otobe ◽  
Keisuke Taira ◽  
Shoji Kitagawa ◽  
Tomio Asai ◽  
Kimio Hanawa

2017 ◽  
Vol 47 (10) ◽  
pp. 2419-2427 ◽  
Author(s):  
Daniel B. Whitt ◽  
John R. Taylor

AbstractAtmospheric storms are an important driver of changes in upper-ocean stratification and small-scale (1–100 m) turbulence. Yet, the modifying effects of submesoscale (0.1–10 km) motions in the ocean mixed layer on stratification and small-scale turbulence during a storm are not well understood. Here, large-eddy simulations are used to study the coupled response of submesoscale and small-scale turbulence to the passage of an idealized autumn storm, with a wind stress representative of a storm observed in the North Atlantic above the Porcupine Abyssal Plain. Because of a relatively shallow mixed layer and a strong downfront wind, existing scaling theory predicts that submesoscales should be unable to restratify the mixed layer during the storm. In contrast, the simulations reveal a persistent and strong mean stratification in the mixed layer both during and after the storm. In addition, the mean dissipation rate remains elevated throughout the mixed layer during the storm, despite the strong mean stratification. These results are attributed to strong spatial variability in stratification and small-scale turbulence at the submesoscale and have important implications for sampling and modeling submesoscales and their effects on stratification and turbulence in the upper ocean.


Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 185-202 ◽  
Author(s):  
G. D. Williams ◽  
M. Hindell ◽  
M.-N. Houssais ◽  
T. Tamura ◽  
I. C. Field

Abstract. Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content (400→50 MJ m−2), flux (50–200 W m−2 loss) and sea ice growth rates (maximum of 7.5–12.5 cm day−1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992–2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.


2016 ◽  
Vol 46 (1) ◽  
pp. 275-287 ◽  
Author(s):  
Cédric P. Chavanne ◽  
Patrice Klein

AbstractA quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation.


2018 ◽  
Vol 48 (7) ◽  
pp. 1471-1478 ◽  
Author(s):  
Johna E. Rudzin ◽  
Lynn K. Shay ◽  
William E. Johns

AbstractMultiple studies have shown that reduced sea surface temperature (SST) cooling occurs under tropical cyclones (TCs) where a fresh surface layer and subsurface halocline exist. Reduced SST cooling in these scenarios has been attributed to a barrier layer, an upper-ocean feature in the tropical global oceans in which a halocline resides within the isothermal mixed layer. Because upper-ocean stratification theoretically reduces ocean mixing induced by winds, the barrier layer is thought to reduce SST cooling during TC passage, sustaining heat and moisture fluxes into the storm. This research examines how both the inclusion of salinity and upper-ocean salinity stratification influences SST cooling for a variety of upper-ocean thermal regimes using one-dimensional (1D) ocean mixed layer (OML) models. The Kraus–Turner, Price–Weller–Pinkel, and Pollard–Rhines–Thompson 1D OML schemes are used to examine SST cooling and OML deepening during 30 m s−1 wind forcing (~category 1 TC) for both temperature-only and temperature–salinity stratification cases. Generally, the inclusion of salinity (a barrier layer) reduces SST cooling for all temperature regimes. However, results suggest that SST cooling sensitivities exist depending on thermal regime, salinity stratification, and the 1D OML model used. Upper-ocean thermal and haline characteristics are put into context of SST cooling with the creation of a barrier layer baroclinic wave speed to emphasize the influence of salinity stratification on upper-ocean response under TC wind forcing.


Sign in / Sign up

Export Citation Format

Share Document