Indoor and outdoor ambient air temperatures during summer 2019 in Augsburg, Germany

Author(s):  
Christoph Beck ◽  
Marisa Fritsch ◽  
Marco Linder ◽  
Johanna Völkel ◽  
Sabrina Beckmann ◽  
...  

<p>The summer of 2019 featured significantly too warm conditions in Germany during all summer months. This included several distinct warm episodes and heat waves, the most pronounced of these appearing around end of July.</p><p>Within the framework of the interdisciplinary research project Abc (Augsburg bleibt cool – Augsburg stays cool) – funded by the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety – it is intended to detect and quantify urban thermal hot-spots with respect to outdoor and as well indoor air temperatures in the city of Augsburg (Bavaria, SE Germany). The knowledge of such spatiotemporal patterns of thermal and especially heat-stress exposure are an indispensable basis for any further aspired local climate modeling and adaptation studies.</p><p>To this end, in June 2019 around 500 low-cost thermometers and around 50 thermo-hygrometers have been distributed among residents of the central city parts of Augsburg to record ambient indoor temperatures during summer. As high indoor air temperatures are suspected to be health relevant in particular during night, participants placed the thermometers in their bedrooms.</p><p>Outdoor temperature and humidity have been recorded simultaneously by an already existing comprehensive urban climate measuring network.</p><p>In this contribution we present main features of the data set of indoor temperatures and show and discuss first analyses concerning temporal and spatial variability of indoor air temperatures during summer 2019. This includes a comparison of indoor and outdoor temperatures, analyses of the influence of urban structures (e.g. in terms of local climate zones) and as well the influence of building characteristics (e.g. age, building material, ...) on indoor air temperatures.</p>

2018 ◽  
Vol 9 (1) ◽  
pp. 49-57
Author(s):  
L. F. Al-Hyari ◽  
M. Kassai

The statistical data show that the application of active cooling is spread widely in residential and commercial buildings. In these buildings, the ventilation is significantly increased in the whole energy consumption. There are similar problems in the operation of post-insulation of existing buildings. In this case, the energy consumption of the ventilation system gives a major proportion of the whole building services energy consumption. The opportuneness of this research shows that the actual available calculation procedures and technical designing data are only rough approximations for analyzing the energy consumption of air handling units and the energy saved by the integrated heat or energy recovery units. There are not exact methods and unequivocal technical data. In previous researches, the production and development companies have not investigated the effectiveness of the energy recovery units under difference ambient air conditions and the period of defrost cycle when the heat recovery can only partly operate under difference ambient air temperatures. During this term, a re-heater has to fully heat up the ambient cold air to the temperature of supplied air and generate the required heating demand to provide the necessary indoor air temperature.


2019 ◽  
Vol 124 (14) ◽  
pp. 7764-7785 ◽  
Author(s):  
M. O. Mughal ◽  
Xian‐Xiang Li ◽  
Tiangang Yin ◽  
Alberto Martilli ◽  
Oscar Brousse ◽  
...  

2021 ◽  
Author(s):  
Ines langer ◽  
Alexander Pasternack ◽  
Uwe Ulbrich ◽  
Henning Rust

<p>Surface (2 m) temperature and specific humidity data are measured at 5-minute intervals in a network comprising 33 stations distributed across the city of Berlin, Germany. These data are utilized in order to validate a LES (large eddy simulation) model designed to assess the local climate at a very high resolution of 10 m to 1 m. This model, was developed at the ​Institute of Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Germany, and is developed into an application tool for city planners within the funding programme "[UC²] - Urban Climate under Change", of the German Federal Ministry of Education and Research (BMBF).</p><p>The evaluation distinguishes between the different Local climate zones (LCZ) in the city, which are defined following the concept of Stewart & Oke (2012). For Berlin, the following LCZ have been identified: 2 (compact midrise), 4 (open high-rise), 6 (open low-rise), 8 (large low-rise), A (dense trees), B (scattered trees), D (low Plants), G (water).</p><p>We analyzed one cold winter day during an intensive observation period from 06 UTC on 17<sup>th</sup> January to 06 UTC on 18<sup>th</sup> January, 2017. The minimum and maximum recorded temperatures were -8.1 °C and +2 °C, respectively, the sun shine duration was 6.5 hours. Daily and hourly mean absolute error, mean square error and root mean square error confirm that the deviation between measurements and the PALM-4U model differs between the LCZ for Berlin, with particularly large negative deviations of up to 5 K in forest areas, as they are not yet well represented in the model. Smallest deviations are found for the industrial zone. In all cases, the observed amplitude of the diurnal cycle is underestimated. The role of the driving model for the deviations found is addressed.</p><p>Stewart, I.D., Oke, T.R. (2012) Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc. 93 1879-1900. DOI: 10.1175/BAMS-D-11-00019.1.</p><p> </p>


2019 ◽  
Vol 277 ◽  
pp. 02016
Author(s):  
W F M Yusoff ◽  
N H Ja'afar

Malaysia heritage buildings are the country's architectural gems. Among them is the religious building such as mosque. The Malaysia heritage mosque is normally built in response to the local culture and environment. Unlike most of Malaysia modern mosques where air conditioning is opted as ventilation mode, the heritage mosques achieve indoor thermal comfort via the passive architectural design. Due to that, this study was executed with the purpose of investigating the indoor thermal comfort of a Malaysia heritage mosque located at traditional street in Melaka, namely Masjid Tanah. The methodology used in the study was field measurement, in which the parameters measured were the indoor and outdoor air temperatures. The field measurement was conducted for two days in the end of March and early of April 2018, from 9 am to 4 pm. The indoor predicted comfort temperature was derived using the adaptive model. The findings indicated that the measured indoor air temperatures were lower than the indoor predicted comfort temperatures at most of the time. Therefore, it shows that the passive architectural design adopted by the Malaysia heritage mosque, which is Masjid Tanah, is able to provide indoor thermal comfort to the users.


2021 ◽  
Vol 10 (4) ◽  
pp. 260
Author(s):  
Michal Lehnert ◽  
Stevan Savić ◽  
Dragan Milošević ◽  
Jelena Dunjić ◽  
Jan Geletič

In the light of climate change and burgeoning urbanization, heat loads in urban areas have emerged as serious issues, affecting the well-being of the population and the environment. In response to a pressing need for more standardised and communicable research into urban climate, the concept of local climate zones (LCZs) has been created. This concept aims to define the morphological types of (urban) surface with respect to the formation of local climatic conditions, largely thermal. This systematic review paper analyses studies that have applied the concept of LCZs to European urban areas. The methodology utilized pre-determined keywords and five steps of literature selection. A total of 91 studies were found eligible for analysis. The results show that the concept of LCZs has been increasingly employed and become well established in European urban climate research. Dozens of measurements, satellite observations, and modelling outcomes have demonstrated the characteristic thermal responses of LCZs in European cities. However, a substantial number of the studies have concentrated on the methodological development of the classification process, generating a degree of inconsistency in the delineation of LCZs. Recent trends indicate an increasing prevalence of the accessible remote-sensing based approach over accurate GIS-based methods in the delineation of LCZs. In this context, applications of the concept in fine-scale modelling appear limited. Nevertheless, the concept of the LCZ has proven appropriate and valuable to the provision of metadata for urban stations, (surface) urban heat island analysis, and the assessment of outdoor thermal comfort and heat risk. Any further development of LCZ mapping appears to require a standardised objective approach that may be globally applicable.


2021 ◽  
Vol 55 (4) ◽  
pp. 27-71
Author(s):  
Ilona Bárány Kevei ◽  
Zoltán Zboray ◽  
Márton Kiss

In this study the changes in the nighttime heat load in Carpathian Basin cities during the 21st century were examined. To quantify the heat load, the tropical night climate index was used. The MUKLIMO_3 local scale climate model was used to describe the urban processes and the land use classes were defined by the local climate zones. The expected change was examined over three periods: the 1981–2010 was taken as reference period using the Carpatclim database and the 2021–2050 and 2071–2100 future periods using EURO-CORDEX regional model simulation data for two scenarios (RCP4.5 and RCP8.5). To combine the detailed spatial resolution and the long time series, a downscaling method was applied. Our results show that spectacular changes could be in the number of tropical nights during the 21st century and the increasing effect of the urban landform is obvious. In the near future, a slight increase can be expected in the number of tropical nights, which magnitude varies from city to city and there is no major difference between the scenarios. However, at the end of the century the results of the two scenarios differ: the values can be 15-25 nights in case of RCP4.5 and 30-50 nights in case of RCP8.5. The results show that dwellers could be exposed to high heat load in the future, as the combined effect of climate change and urban climate, thus developing various mitigation and adaptation strategies is crucial.


2018 ◽  
Vol 22 (16) ◽  
pp. 1-22 ◽  
Author(s):  
Jeff Chieppa ◽  
Austin Bush ◽  
Chandana Mitra

Abstract Classifying “urban” and “rural” environments is a challenge in understanding urban climate, specifically urban heat islands (UHIs). Stewart and Oke developed the “local climate zone” (LCZ) classification system to clarify these distinctions using 17 unique groups. This system has been applied to many areas around the world, but few studies have attempted to utilize them to detect UHI effects in smaller cities. Our aim was to use the LCZ classification system 1) to detect UHI in two small cities in Alabama and 2) to determine whether similar zones experienced similar intensity or magnitude of UHIs. For 1 week, we monitored hourly temperature in two cities, in four zones: compact low-rise, open low-rise, dense forests, and water. We found that urban zones were often warmer for overall, daytime, and nighttime temperatures relative to rural zones (from −0.1° to 2.8°C). In addition, we found that temperatures between cities in similar zones were not very similar, indicating that the LCZ system does not predict UHI intensity equally in places with similar background climates. We found that the LCZ classification system was easy to use, and we recognize its potential as a tool for urban ecologists and urban planners.


2020 ◽  
Author(s):  
Rogers B. Kanee ◽  
Precious N. Ede ◽  
Omosivie Maduka ◽  
Golden Owhonda ◽  
Eric O Aigbogun

Abstract Background: Over the years, the ambient air quality of Port Harcourt metropolis has deteriorated largely because of the petrochemical and hydrocarbon activities. This study, therefore, investigated the PAH levels in wistar rats exposed to ambient air of Port Harcourt metropolis.Method: Using an animal model, this study evaluated the blood PAH concentrations as an indicator of toxicity in living tissues exposed to ambient air polluted with particulate matter in Port Harcourt metropolis. Twenty (20) Wistar rats imported from a non-polluted city (Enugu) were exposed to both indoor and outdoor air for 90 days. Following the IACUC regulation, baseline data were obtained from 4 randomly selected animals, while the remaining 16 rats (8 each for indoor and outdoor) were left till day 90. Blood samples from the animals were obtained by cardiac puncture, and the PAHs concentrations were determined using Gas Chromatography Flame-Ionization Detector (GC-FID). GraphPad Prism (version 8.0.2) Sidak’s (for multiple data set) and unpaired t-tests (for two data sets) were used to evaluate the differences in group means at 95% confidence level.Result: Seven (7) of the PAHs found in indoor and outdoor rats were absent in blood tissues of baseline rats. The total mean concentrations of PAH were (82%), (13%), and (5%) in outdoor, indoor, and baseline animal groups respectively. Additionally, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, Pyrene, 2-methyl, and other carcinogenic PAHs were all significantly higher (P<0.05) in outdoor samples when compared to the indoor and baseline samples.Conclusion: The results demonstrated that the ambient air of Port Harcourt was highly concentrated with PAHs. Vulnerable groups such as outdoor workers, pregnant women, children and infants, and terminally ill are the most susceptible to the health risks posed by these pollutants. Therefore, urgent environmental and public health measures are necessary to mitigate the looming danger.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 936
Author(s):  
Hai Yan ◽  
Shimin Yang ◽  
Xiaohui Guo ◽  
Fan Wu ◽  
Renwu Wu ◽  
...  

At present, conflicts between urban development and the climate environment are becoming increasingly apparent under rapid urbanization in China. Revealing the dynamic mechanism and controlling factors of the urban outdoor thermal environment is the necessary theoretical preparation for regulating and improving the urban climate environment. Taking Hangzhou as an example and based on the local climate zones classification system, we investigated the effects of land cover composition and structure on temperature variability at the local scale. The measurement campaign was conducted within four local climate zones (LCZ 2, 4, 5, and LCZ 9) during 7 days in the summer of 2018. The results showed that the temperature difference within the respective LCZ was always below 1.1 °C and the mean temperature difference between LCZs caused by different surface physical properties was as high as 1.6 °C at night. Among four LCZs, LCZ 2 was always the hottest, and LCZ 9 was the coolest at night. In particular, the percentage of pervious surface was the most important land cover feature in explaining the air temperature difference. For both daytime and nighttime, increasing the percentage of pervious surface as well as decreasing the percentage of impervious surface and the percentage of building surface could lower the local temperature, with the strongest influence radius range from 120 m to 150 m. Besides, the temperature increased with the SVF increased at day and opposite at night.


Sign in / Sign up

Export Citation Format

Share Document