Bias in CMIP6 models compared to observed regional dimming and brightening trends (1961-2014)

Author(s):  
Kine Onsum Moseid ◽  
Michael Schulz ◽  
Trude Storelvmo ◽  
Ingeborg Rian Julsrud ◽  
Dirk Olivié ◽  
...  

<p>Anthropogenic aerosol emissions have increased considerably over the last century, but climate effects and quantification of the emissions are highly uncertain as one goes back in time. This uncertainty is partly due to a lack of observations in the pre-satellite era, and previous studies show that Earth system models (ESMs) do not adequately represent surface energy fluxes over the historical era. We investigated global and regional aerosol effects over the time period 1961-2014 by looking at surface downwelling shortwave radiation (SDSR).<br>We used observations from ground stations as well as multiple experiments from five ESMs participating in the Coupled Model Intercomparison Project Version 6 (<em>CMIP6</em>). Our results show that this subset of models reproduces the observed transient SDSR well in Europe, but poorly in China. <br>The models do not reproduce the observed trend reversal in SDSR in China in the late 1980s, which is attributed to a change in the emission of SO<sub>2</sub> in this region. The emissions of SO<sub>2</sub> show no sign of a trend reversal that could explain the observed SDSR evolution over China, and neither do other aerosols relevant to SDSR. The results from various aerosol emission perturbation experiments from <em>DAMIP</em>, <em>RFMIP</em> and <em>AerChemMIP</em> suggest that its likely, that aerosol effects are responsible for the dimming signal, although not its full amplitude. Simulated cloud cover changes in the different models are not correlated with observed changes over China.  Therefore we suggest that the discrepancy between modeled and observed SDSR evolution is partly caused by erroneous aerosol and aerosol precursor emission inventories. This is an important finding as it may help interpreting whether ESMs reproduce the historical climate evolution for the right or wrong reason.</p>

2020 ◽  
Author(s):  
Kine Onsum Moseid ◽  
Michael Schulz ◽  
Trude Storelvmo ◽  
Ingeborg Rian Julsrud ◽  
Dirk Olivié ◽  
...  

Abstract. Anthropogenic aerosol emissions have increased considerably over the last century, but climate effects and quantification of the emissions are highly uncertain as one goes back in time. This uncertainty is partly due to a lack of observations in the pre-satellite era, and previous studies show that Earth system models (ESMs) do not adequately represent surface energy fluxes over the historical era. We investigated global and regional aerosol effects over the time period 1961–2014 by looking at surface downwelling shortwave radiation (SDSR). We used observations from ground stations as well as multiple experiments from five ESMs participating in the Coupled Model Intercomparison Project Version 6 (CMIP6). Our results show that this subset of models reproduces the observed transient SDSR well in Europe, but poorly in China. The models do not reproduce the observed trend reversal in SDSR in China in the late 1980s, which is attributed to a change in the emission of sulfur dioxide in this region. The emissions of SO2 show no sign of a trend reversal that could explain the observed SDSR evolution over China, and neither do other aerosols relevant to SDSR. The results from various aerosol emission perturbation experiments from DAMIP, RFMIP and AerChemMIP suggest that its likely, that aerosol effects are responsible for the dimming signal, although not its full amplitude. Simulated cloud cover changes in the different models are not correlated with observed changes over China. Therefore we suggest that the discrepancy between modeled and observed SDSR evolution is partly caused by erroneous aerosol and aerosol precursor emission inventories. This is an important finding as it may help interpreting whether ESMs reproduce the historical climate evolution for the right or wrong reason.


2020 ◽  
Vol 20 (24) ◽  
pp. 16023-16040
Author(s):  
Kine Onsum Moseid ◽  
Michael Schulz ◽  
Trude Storelvmo ◽  
Ingeborg Rian Julsrud ◽  
Dirk Olivié ◽  
...  

Abstract. Anthropogenic aerosol emissions have increased considerably over the last century, but climate effects and quantification of the emissions are highly uncertain as one goes back in time. This uncertainty is partly due to a lack of observations in the pre-satellite era, making the observations we do have before 1990 additionally valuable. Aerosols suspended in the atmosphere scatter and absorb incoming solar radiation and thereby alter the Earth's surface energy balance. Previous studies show that Earth system models (ESMs) do not adequately represent surface energy fluxes over the historical era. We investigated global and regional aerosol effects over the time period 1961–2014 by looking at surface downwelling shortwave radiation (SDSR). We used observations from ground stations as well as multiple experiments from eight ESMs participating in the Coupled Model Intercomparison Project Version 6 (CMIP6). Our results show that this subset of models reproduces the observed transient SDSR well in Europe but poorly in China. We suggest that this may be attributed to missing emissions of sulfur dioxide in China, sulfur dioxide being a precursor to sulfate, which is a highly reflective aerosol and responsible for more reflective clouds. The emissions of sulfur dioxide used in the models do not show a temporal pattern that could explain observed SDSR evolution over China. The results from various aerosol emission perturbation experiments from DAMIP, RFMIP and AerChemMIP show that only simulations containing anthropogenic aerosol emissions show dimming, even if the dimming is underestimated. Simulated clear-sky and all-sky SDSR do not differ greatly, suggesting that cloud cover changes are not a dominant cause of the biased SDSR evolution in the simulations. Therefore we suggest that the discrepancy between modeled and observed SDSR evolution is partly caused by erroneous aerosol and aerosol precursor emission inventories. This is an important finding as it may help interpret whether ESMs reproduce the historical climate evolution for the right or wrong reason.


2021 ◽  
Author(s):  
Chris Wells ◽  
Apostolos Voulgarakis

<p>Aerosols are a major climate forcer, but their historical effect has the largest uncertainty of any forcing; their mechanisms and impacts are not well understood. Due to their short lifetime, aerosols have large impacts near their emission region, but they also have effects on the climate in remote locations. In recent years, studies have investigated the influences of regional aerosols on global and regional climate, and the mechanisms that lead to remote responses to their inhomogeneous forcing. Using the Shared Socioeconomic Pathway scenarios (SSPs), transient future experiments were performed in UKESM1, testing the effect of African emissions following the SSP3-RCP7.0 scenario as the rest of the world follows SSP1-RCP1.9, relative to a global SSP1-RCP1.9 control. SSP3 sees higher direct anthropogenic aerosol emissions, but lower biomass burning emissions, over Africa. Experiments were performed changing each of these sets of emissions, and both. A further set of experiments additionally accounted for changing future CO<sub>2</sub> concentrations, to investigate the impact of CO<sub>2</sub> on the responses to aerosol perturbations. Impacts on radiation fluxes, temperature, circulation and precipitation are investigated, both over the emission region (Africa), where microphysical effects dominate, and remotely, where dynamical influences become more relevant. </p>


2011 ◽  
Vol 11 (3) ◽  
pp. 931-954 ◽  
Author(s):  
Y. Lei ◽  
Q. Zhang ◽  
K. B. He ◽  
D. G. Streets

Abstract. An inventory of anthropogenic primary aerosol emissions in China was developed for 1990–2005 using a technology-based approach. Taking into account changes in the technology penetration within industry sectors and improvements in emission controls driven by stricter emission standards, a dynamic methodology was derived and implemented to estimate inter-annual emission factors. Emission factors of PM2.5 decreased by 7%–69% from 1990 to 2005 in different industry sectors of China, and emission factors of TSP decreased by 18%–80% as well, with the measures of controlling PM emissions implemented. As a result, emissions of PM2.5 and TSP in 2005 were 11.0 Tg and 29.7 Tg, respectively, less than what they would have been without the adoption of these measures. Emissions of PM2.5, PM10 and TSP presented similar trends: they increased in the first six years of 1990s and decreased until 2000, then increased again in the following years. Emissions of TSP peaked (35.5 Tg) in 1996, while the peak of PM10 (18.8 Tg) and PM2.5 (12.7 Tg) emissions occurred in 2005. Although various emission trends were identified across sectors, the cement industry and biofuel combustion in the residential sector were consistently the largest sources of PM2.5 emissions, accounting for 53%–62% of emissions over the study period. The non-metallic mineral product industry, including the cement, lime and brick industries, accounted for 54%–63% of national TSP emissions. There were no significant trends of BC and OC emissions until 2000, but the increase after 2000 brought the peaks of BC (1.51 Tg) and OC (3.19 Tg) emissions in 2005. Although significant improvements in the estimation of primary aerosols are presented here, there still exist large uncertainties. More accurate and detailed activity information and emission factors based on local tests are essential to further improve emission estimates, this especially being so for the brick and coke industries, as well as for coal-burning stoves and biofuel usage in the residential sector.


2018 ◽  
Vol 31 (20) ◽  
pp. 8381-8399 ◽  
Author(s):  
S. Undorf ◽  
M. A. Bollasina ◽  
G. C. Hegerl

The impact of North American and European (NAEU) anthropogenic aerosol emissions on Eurasian summer climate during the twentieth century is studied using historical single- and all-forcing (including anthropogenic aerosols, greenhouse gases, and natural forcings) simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Intermodel agreement on significant linear trends during a period of increasing NAEU sulfate emissions (1900–74) reveals robust features of NAEU aerosol impact, supported by opposite changes during the subsequent period of decreasing emissions. Regionally, these include a large-scale cooling and associated anticyclonic circulation, as well as a narrowing of the diurnal temperature range (DTR) over Eurasian midlatitudes. Remotely, NAEU aerosols induce a drying over the western African and northern Indian monsoon regions and a strengthening and southward shift of the subtropical jet consistent with the pattern of temperature change. Over Europe, the temporal variations of observed temperature, pressure, and DTR tend to agree better with simulations that include aerosols. Throughout the twentieth century, aerosols are estimated to explain more than a third of the simulated interdecadal forced variability of European near-surface temperature and more than half between 1940 and 1970. These results highlight the substantial aerosol impact on Eurasian climate, already identifiable in the first half of the twentieth century. This may be relevant for understanding future patterns of change related to further emission reductions.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1095
Author(s):  
Jeongbyn Seo ◽  
Sungbo Shim ◽  
Sang-Hoon Kwon ◽  
Kyung-On Boo ◽  
Yeon-Hee Kim ◽  
...  

As one of the main drivers for climate change, it is important to understand changes in anthropogenic aerosol emissions and evaluate the climate impact. Anthropogenic aerosols have affected global climate while exerting a much larger influence on regional climate by their short lifetime and heterogeneous spatial distribution. In this study, the effective radiative forcing (ERF), which has been accepted as a useful index for quantifying the effect of climate forcing, was evaluated to understand the effects of aerosol on regional climate over a historical period (1850–2014). Eastern United States (EUS), Western European Union (WEU), and Eastern Central China (ECC), are regions that predominantly emit anthropogenic aerosols and were analyzed using Coupled Model Intercomparison Project 6 (CMIP6) simulations implemented within the framework of the Aerosol Chemistry Model Intercomparison Project (AerChemMIP) in the UK’s Earth System Model (UKESM1). In EUS and WEU, where industrialization occurred relatively earlier, the negative ERF seems to have been recovering in recent decades based on the decreasing trend of aerosol emissions. Conversely, the radiative cooling in ECC seems to be strengthened as aerosol emission continuously increases. These aerosol ERFs have been largely attributed to atmospheric rapid adjustments, driven mainly by aerosol-cloud interactions rather than direct effects of aerosol such as scattering and absorption.


2020 ◽  
Author(s):  
Ken Carslaw ◽  
Cat Scott ◽  
Masaru Yoshioka ◽  
Douglas Hamilton ◽  
Fiona O’Connor ◽  
...  

<p>Assessment of anthropogenic radiative forcing requires a robust understanding of the composition of the pre-industrial baseline atmosphere from which calculations are made</p><p>It is often assumed that fire activity and the associated aerosol emissions were lower in the pre-industrial period than in the present day. However, some lines of evidence suggest that fire activity may have halved since the pre-industrial period. </p><p>Here we compare the simulated ratio of pre-industrial (c.1750CE and c.1850CE) to present-day black carbon surface concentrations in five ESMs (CNRM-ESM2-1, EC-Earth3, IPSL-CM6, NorESM1.2, UKESM1), using historical fire emissions from the Sixth Coupled Model Intercomparison Project (CMIP6), to the ratio in Northern Hemisphere ice-core records. </p><p>We find that when forced with CMIP6 fire emissions all ESMs overestimate the present-day to pre-industrial black carbon ratio. This is consistent with previous studies and suggests that the contribution of fire to the composition of the pre-industrial atmosphere may be too low. If the contrast between the pre-industrial and present-day atmospheres in these models is too great, they are likely to overestimate the strength of the anthropogenic aerosol radiative forcing.  </p><p>We extend our analysis to include additional ESMs providing historical simulations for CMIP6, as included in the IPCC’s Sixth Assessment Report.</p><p> </p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


2018 ◽  
Vol 31 (14) ◽  
pp. 5707-5729 ◽  
Author(s):  
Weichen Tao ◽  
Gang Huang ◽  
Renguang Wu ◽  
Kaiming Hu ◽  
Pengfei Wang ◽  
...  

Abstract The present study documents the biases of summertime northwest Pacific (NWP) atmospheric circulation anomalies during the decaying phase of ENSO and investigates their plausible reasons in 32 models from phase 5 of the Coupled Model Intercomparison Project. Based on an intermodel empirical orthogonal function (EOF) analysis of El Niño–Southern Oscillation (ENSO)-related 850-hPa wind anomalies, the dominant modes of biases are extracted. The first EOF mode, explaining 21.3% of total intermodel variance, is characterized by a cyclone over the NWP, indicating a weaker NWP anticyclone. The cyclone appears to be a Rossby wave response to unrealistic equatorial western Pacific (WP) sea surface temperature (SST) anomalies related to excessive equatorial Pacific cold tongue in the models. On one hand, the cold SST biases increase the mean zonal SST gradient, which further intensifies warm zonal advection, favoring the development and persistence of equatorial WP SST anomalies. On the other hand, they reduce the anomalous convection caused by ENSO-related warming, and the resultant increase in downward shortwave radiation contributes to the SST anomalies there. The second EOF mode, explaining 18.6% of total intermodel variance, features an anticyclone over the NWP with location shifted northward. The related SST anomalies in the Indo-Pacific sector show a tripole structure, with warming in the tropical Indian Ocean and equatorial central and eastern Pacific and cooling in the NWP. The Indo-Pacific SST anomalies are highly controlled by ENSO amplitude, which is determined by the intensity of subtropical cells via the adjustment of meridional and vertical advection in the models.


Sign in / Sign up

Export Citation Format

Share Document