Do alter post-wildfire straw mulching application and salvage logging pine natural regeneration after wildfires?

Author(s):  
Manuel Esteban Lucas-Borja ◽  
Cristina Fernández ◽  
Pedro Antonio Plaza- Alvárez ◽  
Javier González-Romero ◽  
Esther Peña-Mollina ◽  
...  

<p>Mulching application and salvage logging are often performed in forests after fire to recover timber values and avoid soil erosion. These post-fire practices are believed to positively and negatively impact soil properties and initial seedling recruitment or seedling growth in pine stands. Mulch may increase soil moisture and lower soil temperature, which thus promotes seedling recruitment, whereas logging operations may generate soil compaction and destroy seedlings. As Mediterranean forests are delicate ecosystems, and different pine species or contrasting microclimate conditions (semiarid vs. subhumid Mediterranean climates) can display several natural regeneration trends, we investigated whether mulching combined with logging significantly alters soil properties, initial seedling recruitment and seedling growth in burned Pinus halepensis (Lietor) and Pinus pinaster (A Gudiña) stands in the short term. Our results demonstrated that soil organic matter and total nitrogen were the only soil parameters affected by treatments at site Liétor. Monitoring activity confirmed that regardless of tree felling or not, mulch treatment improved seedling density in the short term with a semiarid Mediterranean climate. At Liétor, seedling density was over 40% higher when mulching was applied, whereas aerial seedling length was the only seedling variable affected by this treatment. Conversely, the mulching+logging combination showed the highest seedling density, which could be related with more light availability after tree felling and the almost null effect of employed logging machinery. The harsh conditions at Liétor due to the limited water and light demands of pine species when water resources were ensured at site A Gudiña could be decisive for understanding the effect of mulching and logging operations for initial seedling recruitment. Our results generally suggest short-term soil changes and contrasting initial seedling recruitments after mulch and logging in burned semiarid and subhumid Mediterranean pine forests. </p><p> </p>

Author(s):  
Bruno Gianmarco Carra ◽  
Giuseppe Bombino ◽  
Manuel Esteban Lucas-Borja ◽  
Adele Muscolo ◽  
Federico Romeo ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 348
Author(s):  
Thuy Thu Doan ◽  
Phimmasone Sisouvanh ◽  
Thanyakan Sengkhrua ◽  
Supranee Sritumboon ◽  
Cornelia Rumpel ◽  
...  

Organic amendments may improve the quality of acidic tropical agricultural soils with low organic carbon contents under conventional management (mineral fertilization and irrigation) in Southeast Asia. We investigated the effect of biochar, compost and their combination on maize growth and yield, soil physical, biological and chemical properties at harvesting time at four sites in three countries: Thailand, Vietnam and Laos. Treatments consisted of 10 t·ha−1 cow manure compost and 7 t·ha−1 of Bamboo biochar and their combination. Maize biomass production and cop yields were recorded for two seasons. Elemental content, pH and nutrient availability of soils were analyzed after the first growing season. We also characterized macrofauna abundance and water infiltration. Few changes were noted for maize biomass production and maize cop yield. Soil chemical parameters showed contrasting, site-specific results. Compost and biochar amendments increased soil organic carbon, pH, total K and N, P and K availability especially for sandy soils in Thailand. The combination of both amendments could reduce nutrient availability as compared to compost only treatments. Physical and biological parameters showed no treatment response. We conclude that the addition of compost, biochar and their mixture to tropical soils have site-specific short-term effects on chemical soil parameters. Their short-term effect on plants is thus mainly related to nutrient input. The site-dependent results despite similar crops, fertilization and irrigation practices suggest that inherent soil parameters and optimization of organic amendment application to specific pedoclimatic conditions need future attention.


Author(s):  
Shin Woong Kim ◽  
Matthias C. Rillig

AbstractWe collated and synthesized previous studies that reported the impacts of microplastics on soil parameters. The data were classified and integrated to screen for the proportion of significant effects, then we suggest several directions to alleviate the current data limitation in future experiments. We compiled 106 datasets capturing significant effects, which were analyzed in detail. We found that polyethylene and pellets (or powders) were the most frequently used microplastic composition and shape for soil experiments. The significant effects mainly occurred in broad size ranges (0.1–1 mm) at test concentrations of 0.1%–10% based on soil dry weight. Polyvinyl chloride and film induced significant effects at lower concentrations compared to other compositions and shapes, respectively. We adopted a species sensitivity distribution (SSD) and soil property effect distribution (SPED) method using available data from soil biota, and for soil properties and enzymes deemed relevant for microplastic management. The predicted-no-effect-concentration (PNEC)-like values needed to protect 95% of soil biota and soil properties was estimated to be between 520 and 655 mg kg−1. This study was the first to screen microplastic levels with a view toward protecting the soil system. Our results should be regularly updated (e.g., quarterly) with additional data as they become available.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Víctor Fernández-García ◽  
Elena Marcos ◽  
Sara Huerta ◽  
Leonor Calvo

Abstract Background Wildfires are one of the major environmental concerns in Mediterranean ecosystems. Thus, many studies have addressed wildfire impacts on soil and vegetation in Mediterranean forests, but the linkages between these ecosystem compartments after fire are not well understood. The aim of this work is to analyze soil-vegetation relationships in Mediterranean burned forests as well as the consistency of these relationships among forests with different environmental conditions, at different times after fire, and among vegetation with different functional traits. Results Our results indicate that study site conditions play an important role in mediating soil-vegetation relationships. Likewise, we found that the nature of soil-vegetation relationships may vary over time as fire effects are less dominant in both ecosystem compartments. Despite this, we detected several common soil-vegetation relationships among study sites and times after fire. For instance, our results revealed that available P content and stoichiometry (C:P and N:P) were closely linked to vegetation growth, and particularly to the growth of trees. We found that enzymatic activities and microbial biomass were inversely related to vegetation growth rates, whereas the specific activities of soil enzymes were higher in the areas with more vegetation height and cover. Likewise, our results suggest that resprouters may influence soil properties more than seeders, the growth of seeders being more dependent on soil status. Conclusions We provide pioneer insights into how vegetation is influenced by soil, and vice-versa, in Mediterranean burned areas. Our results reflect variability in soil-vegetation relationships among study sites and time after fire, but consistent patterns between soil properties and vegetation were also detected. Our research is highly relevant to advance in forest science and could be useful to achieve efficient post-fire management.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 528
Author(s):  
Jelena Kranjec Orlović ◽  
Damir Drvodelić ◽  
Marko Vukelić ◽  
Matea Rukavina ◽  
Danko Diminić ◽  
...  

When natural regeneration of Quercus robur stands is hampered by an insufficient acorn yield, human assisted sowing of acorns collected in non-affected stands and stored for some period of time is performed. To inhibit the development of fungi and acorn deterioration during storage, thermotherapy is usually applied by submerging acorns for 2.5 h in water heated to 41 °C. This research aimed to test the effect of four thermotherapy treatments of different durations and/or applied temperatures as well as short-term storage at −1 °C or 3 °C on acorn internal mycobiota and germination. Fungal presence in cotyledons was analyzed in 450 acorns by isolation of mycelia on artificial media, followed by a DNA-based identification. Germination of 2000 acorns was monitored in an open field trial. Thermotherapy significantly decreased fungal diversity, while storage at 3 °C increased the isolation frequency of several fungi, mainly Penicillium spp. The most frequently isolated fungi did not show a negative impact on acorn germination after short-term storage. The study confirmed the efficiency of thermotherapy in the eradication of a part of acorn internal mycobiota, but also its effect on the proliferation of fast-colonizing fungi during storage. However, the latter showed to be more stimulated by storage conditions, specifically by storage at 3 °C.


2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


Sign in / Sign up

Export Citation Format

Share Document