Centrifugal Instability of a Geostrophic Jet

Author(s):  
Francis Poulin ◽  
Matthew Harris ◽  
Kevin Lamb

<p>Oceanic and Atmospheric jets with sufficiently strong anticyclonic vorticity are subject to centrifugal instabilities. This mechanism is relatively fast in comparison to barotropic and baroclinic instabilities and require non-conservative forces that mix the fluid properties. In this work, we present a novel approach to compute the linear stability characteristics of both barotropic and baroclinic jets. This enables us to compute the growth rates and spatial structures very accurately and efficiently. Subsequently, by integrating the fully nonlinear, non-hydrostatic dynamics using the spectrally accurate numerical model SPINS, we validate the predictions of the linear theory and then investigate the nonlinear equilibration that results. Depending on the Reynolds number of the flows, there are instances where a secondary instability occurs that eventually produces vortical structures, some of which are themselves subject to centrifugal instabilities. This idealized investigation quantifies the effects of centrifugal instabilities as an initial step to determine how to parameterize them.</p><p> </p>

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Simon Larsson ◽  
Juan Manuel Rodríguez Prieto ◽  
Hannu Heiskari ◽  
Pär Jonsén

Modeling of wet stirred media mill processes is challenging since it requires the simultaneous modeling of the complex multiphysics in the interactions between grinding media, the moving internal agitator elements, and the grinding fluid. In the present study, a multiphysics model of an HIG5 pilot vertical stirred media mill with a nominal power of 7.5 kW is developed. The model is based on a particle-based coupled solver approach, where the grinding fluid is modeled with the particle finite element method (PFEM), the grinding media are modeled with the discrete element method (DEM), and the mill structure is modeled with the finite element method (FEM). The interactions between the different constituents are treated by loose (or weak) two-way couplings between the PFEM, DEM, and FEM models. Both water and a mineral slurry are used as grinding fluids, and they are modeled as Newtonian and non-Newtonian fluids, respectively. In the present work, a novel approach for transferring forces between grinding fluid and grinding media based on the Reynolds number is implemented. This force transfer is realized by specifying the drag coefficient as a function of the Reynolds number. The stirred media mill model is used to predict the mill power consumption, dynamics of both grinding fluid and grinding media, interparticle contacts of the grinding media, and the wear development on the mill structure. The numerical results obtained within the present study show good agreement with experimental measurements.


2017 ◽  
Vol 834 ◽  
pp. 5-54 ◽  
Author(s):  
Dorian Dupuy ◽  
Adrien Toutant ◽  
Françoise Bataille

This paper investigates the energy exchanges associated with the half-trace of the velocity fluctuation correlation tensor in a strongly anisothermal low Mach fully developed turbulent channel flow. The study is based on direct numerical simulations of the channel within the low Mach number hypothesis and without gravity. The overall flow behaviour is governed by the variable fluid properties. The temperature of the two channel walls are imposed at 293 K and 586 K to generate the temperature gradient. The mean friction Reynolds number of the simulation is 180. The analysis is carried out in the spatial and spectral domains. The spatial and spectral studies use the same decomposition of the terms of the evolution equation of the half-trace of the velocity fluctuation correlation tensor. The importance of each term of the decomposition in the energy exchanges is assessed. This lets us identify the terms associated with variations or fluctuations of the fluid properties that are not negligible. Then, the behaviour of the terms is investigated. The spectral energy exchanges are first discussed in the incompressible case since the analysis is not present in the literature with the decomposition used in this study. The modification of the energy exchanges by the temperature gradient is then investigated in the spatial and spectral domains. The temperature gradient generates an asymmetry between the two sides of the channel. The asymmetry can in a large part be explained by the combined effect of the mean local variations of the fluid properties, combined with a Reynolds number effect.


Author(s):  
M. S. Yun ◽  
B. P. Huynh

Non-isothermal peristaltic flow of Newtonian fluids in a circular tube is investigated numerically, using a commercial Computational Fluid Dynamics (CFD) software package. Simulation is performed over a range of Reynolds-number values, up to 1000. Temperature affects the flow field via fluid viscosity, which is assumed to decrease exponentially with temperature. Other fluid properties are assumed to be constant, and are similar to those of an oil. Allowing for temperature effects alters significantly the flow pattern and reduces pressure change. In the crest region, recirculation appears in non-isothermal flow at a much smaller Reynolds number Re than in isothermal flow. Influence of the Reynolds number itself is also reduced significantly, such that the flow pattern changes very little with increasing Re, in contrast to the isothermal case. Similarly, in non-isothermal flow, flow pattern is unchanged at different flow rate. This is also in contrast to the isothermal situation.


2006 ◽  
Vol 2 (S239) ◽  
pp. 230-232 ◽  
Author(s):  
Kwing L. Chan

AbstractWe present results of a numerical model for studying the dynamics of Jupiter's equatorial jet. The computed domain is a piece of spherical shell around the equator. The bulk of the region is convective, with a thin radiative layer at the top. The shell is spinning fast, with a Coriolis number = ΩL/V on the order of 50. A prominent super-rotating equatorial jet is generated, and secondary alternating jets appear in the higher latitudes. The roles of terms in the zonal momentum equation are analyzed. Since both the Reynolds number and the Taylor number are large, the viscous terms are small. The zonal momentum balance is primarily between the Coriolis and the Reynolds stress terms.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5545 ◽  
Author(s):  
Izaz Raouf ◽  
Piotr Gas ◽  
Heung Soo Kim

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


1997 ◽  
Vol 343 ◽  
pp. 43-72 ◽  
Author(s):  
P. ORLANDI ◽  
M. FATICA

Flow in a circular pipe rotating about its axis, at low Reynolds number, is investigated. The simulation is performed by a finite difference scheme, second-order accurate in space and in time. A non-uniform grid in the radial direction yields accurate solutions with a reasonable number of grid points. The numerical method has been tested for the non-rotating pipe in the limit ν→0 to prove the energy conservation properties. In the viscous case a grid refinement check has been performed and some conclusions about drag reduction have been reached. The mean and turbulent quantities have been compared with the numerical and experimental non-rotating pipe data of Eggels et al. (1994a, b). When the pipe rotates, a degree of drag reduction is achieved in the numerical simulations just as in the experiments. Through the visualization of the vorticity field the drag reduction has been related to the modification of the vortical structures near the wall. A comparison between the vorticity in the non-rotating and in the high rotation case has shown a spiral motion leading to the transport of streamwise vorticity far from the wall.


1991 ◽  
Vol 58 (1) ◽  
pp. 278-282 ◽  
Author(s):  
Ronald J. Bauer ◽  
C. H. von Kerczek

The stability of a liquid film flowing down an inclined oscillating wall is analyzed. First, the linear theory growth rates of disturbances are calculated to second order in a disturbance wave number. It is shown that this growth rate is simply the sum of the same growth rate expansions for a nonoscillating film on an inclined plate and an oscillating film on a horizontal plate. These growth rates were originally calculated by Yih (1963, 1968). The growth rate formula derived here shows that long wavelength disturbances to a vertical falling film, which are unstable at all nonzero values of the Reynolds number when the wall is stationary, can be stabilized by sufficiently large values of wall oscillation in certain frequency ranges. Second, the full time-dependent stability equations are solved in terms of a wall oscillation amplitude expansion carried to about 20 terms. This expansion shows that for values of mean flow Reynolds number less than about ten, the wall oscillations completely stabilize the film against all the unstable disturbances of the steady film.


1964 ◽  
Vol 20 (3) ◽  
pp. 513-527 ◽  
Author(s):  
R. Eichhorn ◽  
S. Small

An experimental investigation of the fluid dynamic forces on spheres suspended in a Poiseuille flow was performed. Small spheres of polystyrene, nylon, and Lucite, having diameters ranging from 0.061 in. to 0.126 in. were suspended in Poiseuille flows in a 0.419 in. diameter tube. Variations in particle size and density, the fluid properties, and the angle of inclination of the tube, resulted in a sphere Reynolds number (based on particle diameter and approach velocity) ranging from 80 to 250. The results are presented as curves which include the coefficients of lift and drag, and the dimensionless rotation speed plotted versus Reynolds number and a dimensionless shear parameter.


Sign in / Sign up

Export Citation Format

Share Document