Influence of regionally warm sea surface on moisture and extreme rainfall in Tsushima Strait during August 2013

Author(s):  
Masaru Yamamoto

<p>The present study investigates short-term (four-day) atmospheric response to regionally warm sea surface in Tsushima Strait for two periods (a sunny period, 19-22 August 2013 and a rainy period, 23-26 August 2013) using ensemble WRF simulations with initial condition altered in the presence and absence of an extremely warm SST core. In this presentation, the author focuses on the influence of regionally warm sea surface on moisture and extreme rainfall. The moisture response is quite different between the sunny and rainy periods. Ensemble averaged distribution of time-mean moisture variation induced by a regionally warm sea surface is well correlated with the SST increase during the sunny period. However, it is not clearly correlated with the SST increase during the rainy period when vapor fluctuated because of frequent rainfall. The high SST enhanced time-mean precipitation in the central area of the warm SST core. In the ensemble experiment, the warm SSTs do not always enhance hourly rainfall because the water-vapor concentrations are decreased by prior rainfall events in some members. In a simulation that well reproduces heavy rainfall at Izuhara located in Tsushima Strait in the presence of the warm SST core, high SSTs induced extreme precipitation (~50 mm/h) in the morning. Water vapor decreased after the morning heavy rainfall. The decreased moisture led to low precipitation in the afternoon. In contrast, a low-SST experiment with the warm-SST core removed shows that water-vapor concentrations were higher after weaker morning rainfall, compared to the high SST experiment with the warm core. Because of the high water-vapor concentrations, low SST led to greater precipitation in the afternoon. Thus, when responses of hourly precipitation to SST are investigated, we must consider the temporal water-vapor variation associated with prior rainfall event.</p>

2017 ◽  
Vol 18 (2) ◽  
pp. 451-472 ◽  
Author(s):  
Long Yang ◽  
Maofeng Liu ◽  
James A. Smith ◽  
Fuqiang Tian

Abstract The August 1975 flood in central China was one of the most destructive floods in history. Catastrophic flooding was the product of extreme rainfall from Typhoon Nina over a 3-day period from 5 to 7 August 1975. Despite the prominence of the August 1975 flood, relatively little is known about the evolution of rainfall responsible for the flood. Details of extreme rainfall and flooding for the August 1975 event in central China are examined based on empirical analyses of rainfall and streamflow measurements and based on downscaling simulations using the Weather Research and Forecasting (WRF) Model, driven by Twentieth Century Reanalysis (20CR) fields. Key hydrometeorological features of the flood event are placed in a climatological context through hydroclimatological analyses of 20CR fields. Results point to the complex evolution of rainfall over the 3-day period with distinctive periods of storm structure controlling rainfall distribution in the flood region. Blocking plays a central role in controlling anomalous storm motion of Typhoon Nina and extreme duration of heavy rainfall. Interaction of Typhoon Nina with a second tropical depression played a central role in creating a zone of anomalously large water vapor transport, a central feature of heavy rainfall during the critical storm period on 7 August. Analyses based on the quasigeostrophic omega equation identified the predominant role of warm air advection for synoptic-scale vertical motion. Back-trajectory analyses using a Lagrangian parcel tracking algorithm are used to assess and quantify water vapor transport for the flood. The analytical framework developed in this study is designed to improve hydrometeorological approaches for flood-control design.


2021 ◽  
Author(s):  
Yinan Cai ◽  
Zesheng Chen ◽  
Yan Du

Abstract This study investigates the role of water vapor transport and sea surface temperature (SST) warming in the tropical Indian Ocean (TIO) on the heavy rainfall in central China during boreal early summer. In the past four decades, four significant rainfall events, in 1983, 1998, 2016, and 2020, occured in central China and caused severe floods, in which the year 2020 has the most extreme event. All four events are associated with significant TIO SST warming, associated with a strong and westward extending anomalous anticyclone on the western North Pacific (WNPAC). The anomalous winds in the northwestern flank of the WNPAC bring excess water vapor into central China. The water vapor, mainly carried from the central tropical Pacific, converges in central China and result in heavy rainfall. A theory of regional ocean-atmosphere interaction can well explain the processes, called the Indo-Western Pacific Ocean Capacitor (IPOC) effect. The WNPAC is usually associated with strong El Niño-Southern Oscillation (ENSO), except for the 2020 case. The 2020 event is extraordinary, without ensuring El Niño occurred in the previous winter. In 2020, the significant TIO warming sustained the anomalous WNPAC, inducing the most significant extreme rainfall event in central China. This study reveals that the IPOC effect can dramatically influence the East Asian climate even without involving the ENSO in the Pacific.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
María González Martínez ◽  
Estéban Hélias ◽  
Gilles Ratel ◽  
Sébastien Thiéry ◽  
Thierry Melkior

Biomass preheating in torrefaction at an industrial scale is possible through a direct contact with the hot gases released. However, their high water-content implies introducing moisture (around 20% v/v) in the torrefaction atmosphere, which may impact biomass thermochemical transformation. In this work, this situation was investigated for wheat straw, beech wood and pine forest residue in torrefaction in two complementary experimental devices. Firstly, experiments in chemical regime carried out in a thermogravimetric analyzer (TGA) showed that biomass degradation started from lower temperatures and was faster under a moist atmosphere (20% v/v water content) for all biomass samples. This suggests that moisture might promote biomass components’ degradation reactions from lower temperatures than those observed under a dry atmosphere. Furthermore, biomass inorganic composition might play a role in the extent of biomass degradation in torrefaction in the presence of moisture. Secondly, torrefaction experiments on a lab-scale device made possible to assess the influence of temperature and residence time under dry and 100% moist atmosphere. In this case, the difference in solid mass loss between dry and moist torrefaction was only significant for wheat straw. Globally, an effect of water vapor on biomass transformation through torrefaction was observed (maximum 10%db), which appeared to be dependent on the biomass type and composition.


Author(s):  
S. H. Kim ◽  
K. B. Shim ◽  
C. S. Kim ◽  
J. T. Chou ◽  
T. Oshima ◽  
...  

The influence of water vapor in air on power generation characteristic of solid oxide fuel cells was analyzed by measuring cell voltage at a constant current density, as a function of water vapor concentration at 800°C and 1000°C. Cell voltage change was negligible at 1000°C, while considerable voltage drop was observed at 800°C accelerated at high water vapor concentrations of 20 wt % and 40 wt %. It is considered that La2O3 formed on the (La0.8Sr0.2)0.98MnO3 surface, which is assumed to be the reason for a large voltage drop.


1994 ◽  
Vol 99 (C3) ◽  
pp. 5219 ◽  
Author(s):  
William J. Emery ◽  
Yunyue Yu ◽  
Gary A. Wick ◽  
Peter Schluessel ◽  
Richard W. Reynolds

Atmosphere ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 84 ◽  
Author(s):  
Yuki Minamiguchi ◽  
Hikari Shimadera ◽  
Tomohito Matsuo ◽  
Akira Kondo

Sign in / Sign up

Export Citation Format

Share Document