Soil Moisture Network Design using Advanced Numerical Weather Prediction modelling and Data Mining technology for Hydrological applications

Author(s):  
Lu Zhuo ◽  
Qiang Dai ◽  
Dawei Han

<p>Soil moisture plays an important role in the partitioning of rainfall into evapotranspiration, infiltration and runoff, hence a vital state variable in the hydrological modelling. However, due to the heterogeneity of soil moisture in space most existing in-situ observation networks rarely provide sufficient coverage to capture the catchment-scale soil moisture variations. Clearly, there is a need to develop a systematic approach for soil moisture network design, so that with the minimal number of sensors the catchment spatial soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed. It is based on the Principal Component Analysis (PCA) and Elbow curve for the determination of the optimal number of soil moisture sensors; and K-means Cluster Analysis (CA) and a selection of statistical criteria for the identification of the sensor placements. Furthermore, the long-term (10-year) soil moisture datasets estimated through the advanced Weather Research and Forecasting (WRF) model are used as the network design inputs. In the case of the Emilia Romagna catchment, the results show the proposed network is very efficient in estimating the catchment-scale soil moisture (i.e., with NSE and r at 0.995 and 0.999, respectively for the areal mean estimation; and 0.973 and 0.990, respectively for the areal standard deviation estimation). To retain 90% variance, a total of 50 sensors in a 22,124 km<sup>2</sup> catchment is needed, which in comparison with the original number of WRF grids (828 grids), the designed network requires significantly fewer sensors. However, refinements and investigations are needed to further improve the design scheme which are also discussed in the paper.</p>

2020 ◽  
Author(s):  
Lu Zhuo ◽  
Qiang Dai ◽  
Binru Zhao ◽  
Dawei Han

Abstract. Soil moisture plays an important role in the partitioning of rainfall into evapotranspiration, infiltration and runoff, hence a vital state variable in the hydrological modelling. However, due to the heterogeneity of soil moisture in space most existing in-situ observation networks rarely provide sufficient coverage to capture the catchment-scale soil moisture variations. Clearly, there is a need to develop a systematic approach for soil moisture network design, so that with the minimal number of sensors the catchment spatial soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed. It is based on the Principal Component Analysis (PCA) and Elbow curve for the determination of the optimal number of soil moisture sensors; and K-means Cluster Analysis (CA) and a selection of statistical criteria for the identification of the sensor placements. Furthermore, the long-term (10-year) soil moisture datasets estimated through the advanced Weather Research and Forecasting (WRF) model are used as the network design inputs. In the case of the Emilia Romagna catchment, the results show the proposed network is very efficient in estimating the catchment-scale soil moisture (i.e., with NSE and r at 0.995 and 0.999, respectively for the areal mean estimation; and 0.973 and 0.990, respectively for the areal standard deviation estimation). To retain 90 % variance, a total of 50 sensors in a 22,124 km2 catchment is needed, which in comparison with the original number of WRF grids (828 grids), the designed network requires significantly fewer sensors. However, refinements and investigations are needed to further improve the design scheme which are also discussed in the paper.


2020 ◽  
Vol 24 (5) ◽  
pp. 2577-2591
Author(s):  
Lu Zhuo ◽  
Qiang Dai ◽  
Binru Zhao ◽  
Dawei Han

Abstract. Soil moisture plays an important role in the partitioning of rainfall into evapotranspiration, infiltration, and runoff, hence a vital state variable in hydrological modelling. However, due to the heterogeneity of soil moisture in space, most existing in situ observation networks rarely provide sufficient coverage to capture the catchment-scale soil moisture variations. Clearly, there is a need to develop a systematic approach for soil moisture network design, so that with the minimal number of sensors the catchment spatial soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed. It is based on principal component analysis (PCA) for the investigation of the network redundancy degree and K-means cluster analysis (CA) and a selection of statistical criteria for the determination of the optimal sensor number and placements. Furthermore, the long-term (10-year) 5 km surface soil moisture datasets estimated through the advanced Weather Research and Forecasting (WRF) model are used as the network design inputs. In the case of the Emilia-Romagna catchment, the results show the proposed network is very efficient in estimating the catchment-scale surface soil moisture (i.e. with NSE and r at 0.995 and 0.999, respectively, for the areal mean estimation; and 0.973 and 0.990, respectively, for the areal standard deviation estimation). To retain 90 % variance, a total of 50 sensors in a 22 124 km2 catchment is needed, and in comparison with the original number of WRF grids (828 grids), the designed network requires significantly fewer sensors. However, refinements and investigations are needed to further improve the design scheme, which are also discussed in the paper.


2018 ◽  
Vol 10 (12) ◽  
pp. 1872 ◽  
Author(s):  
Lu Yi ◽  
Wanchang Zhang ◽  
Xiangyang Li

To compare the effectivenesses of different precipitation datasets on hydrological modelling, five precipitation datasets derived from various approaches were used to simulate a two-week runoff process after a heavy rainfall event in the Wangjiaba (WJB) watershed, which covers an area of 30,000 km2 in eastern China. The five precipitation datasets contained one traditional in situ observation, two satellite products, and two predictions obtained from the Numerical Weather Prediction (NWP) models. They were the station observations collected from the China Meteorological Administration (CMA), the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG), the merged data of the Climate Prediction Center Morphing (merged CMORPH), and the outputs of the Weather Research and Forecasting (WRF) model and the WRF four-dimensional variational (4D-Var) data assimilation system, respectively. Apart from the outlet discharge, the simulated soil moisture was also assessed via the Soil Moisture Active Passive (SMAP) product. These investigations suggested that (1) all the five precipitation datasets could yield reasonable simulations of the studied rainfall-runoff process. The Nash-Sutcliffe coefficients reached the highest value (0.658) with the in situ CMA precipitation and the lowest value (0.464) with the WRF-predicted precipitation. (2) The traditional in situ observation were still the most reliable precipitation data to simulate the study case, whereas the two NWP-predicted precipitation datasets performed the worst. Nevertheless, the NWP-predicted precipitation is irreplaceable in hydrological modelling because of its fine spatiotemporal resolutions and ability to forecast precipitation in the future. (3) Gauge correction and 4D-Var data assimilation had positive impacts on improving the accuracies of the merged CMORPH and the WRF 4D-Var prediction, respectively, but the effectiveness of the latter on the rainfall-runoff simulation was mainly weakened by the poor quality of the GPM IMERG used in the study case. This study provides a reference for the applications of different precipitation datasets, including in situ observations, remote sensing estimations and NWP simulations, in hydrological modelling.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1892
Author(s):  
Hailiang Zhang ◽  
Junjian Liu ◽  
Huoqing Li ◽  
Xianyong Meng ◽  
Ablimitijan Ablikim

Soil moisture is a critical parameter in numerical weather prediction (NWP) models because it plays a fundamental role in the exchange of water and energy cycles between the atmosphere and the land surface through evaporation. To improve the forecast skills of the Weather Research and Forecasting (WRF) model in Xinjiang, China, this study investigated the impacts of soil moisture initialization on the WRF forecasts by performing a series of simulations. A group of simulations was conducted using the single-column model (SCM) from 1200 UTC on 15 to 18 August 2019, at Urumchi, Xinjiang (43.78° N, 87.6° E); another was performed using the WRF model for a real weather case in Xinjiang from 0000 UTC 15 August to 1200 UTC 18 August 2019, which included an episode of heavy precipitation and gales. Our most notable findings are as follows. Specific humidity increases and potential temperature decreases persistently when soil moisture increases because of soil water evaporation. Soil moisture initialization could impact the energy budget and modulate the partition of the total available energy at the land surface significantly through evaporation and the greenhouse effect. Replacing the soil moisture with a proper multiple of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) soil moisture data could significantly improve the critical success index (CSI) and frequency bias (FBIAS) of precipitation and the root-mean-squared errors (RMSEs) of 2-m specific humidity and 2-m temperature. These findings indicate the prospect of a new way to improve the forecast skills of WRF in Xinjiang or other similar regions.


2021 ◽  
Author(s):  
Tzu-Hsin Ho ◽  
Michał Gałkowski ◽  
Julia Marshall ◽  
Kai Uwe Totsche ◽  
Christoph Gerbig

<p>Atmospheric transport models are often used to simulate the distribution of Greenhouse Gases (GHGs) for atmospheric inverse modeling. However, errors in simulated transport are often neglected in the context of inverse flux estimation. We coupled the commonly used Weather Research and Forecasting (WRF) model with the greenhouse gas module (WRF-GHG), to enable passive tracer transport simulation of CO<sub>2</sub> and CH<sub>4</sub>. As a mesoscale numerical weather prediction model, WRF’s transport is only constrained by global meteorological fields via initialization and at the lateral boundaries; over time the winds in the center of the domain can deviate considerably from these (re-)analysis fields that are constrained by observations. The aim of this study is to have the WRF-simulated transport represent reality as closely as possible, which in this case means staying consistent with the (ERA5) reanalysis fields used as boundary conditions.</p> <p>Therefore, two ways of blending ERA5 with WRF-GHG were tested: (a) regularly restarting the model with fresh initial conditions from ERA5, and (b) nudging the atmospheric winds, temperatures, and moisture to those from ERA5 continuously, using the built-in FDDA option (four-dimensional data assimilation). FDDA constantly forces the model towards the physical reference state (ERA5) by adding an additional tendency term at each grid point and time step.</p> <p>Meteorological variables, as well as the concentrations of CO<sub>2</sub> and CH<sub>4</sub>, were analyzed by comparing with observations. We also compared mixed layer heights (PBLH) with radiosonde-derived observation. We found that performance in horizontal winds and PBLH are slightly better in the nudged simulation (NS) compared to the simulation incorporating frequent restarts (RS). The advantage of grid-nudging is notable when comparing CH<sub>4</sub> with aircraft measurements from the CoMet campaign. However, differences in soil moisture increase over time, as soil moisture is not used for nudging. The consequence is a change in the Bowen ratio and thus in vertical mixing, impacting the distribution of GHG tracers in general.</p> <p>To preserve the benefits of nudging and avoid the divergence of soil moisture, we recommend a hybrid approach, combining nudging with daily re-initializations. This technique will be used in an ensemble-based regional inversion system currently under development to make use of satellite-based measurements of GHGs.</p>


2016 ◽  
Vol 17 (2) ◽  
pp. 517-540 ◽  
Author(s):  
Joseph A. Santanello ◽  
Sujay V. Kumar ◽  
Christa D. Peters-Lidard ◽  
Patricia M. Lawston

Abstract Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASA’s Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land–atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS–WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spinup can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux–PBL–ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.


2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Mohsen Soltani ◽  
Julian Koch ◽  
Simon Stisen

This study aims to improve the standard water balance evapotranspiration (WB ET) estimate, which is typically used as benchmark data for catchment-scale ET estimation, by accounting for net intercatchment groundwater flow in the ET calculation. Using the modified WB ET approach, we examine errors and shortcomings associated with the long-term annual mean (2002–2014) spatial patterns of three remote-sensing (RS) MODIS-based ET products from MODIS16, PML_V2, and TSEB algorithms at 1 km spatial resolution over Denmark, as a test case for small-scale, energy-limited regions. Our results indicate that the novel approach of adding groundwater net in water balance ET calculation results in a more trustworthy ET spatial pattern. This is especially relevant for smaller catchments where groundwater net can be a significant component of the catchment water balance. Nevertheless, large discrepancies are observed both amongst RS ET datasets and compared to modified water balance ET spatial pattern at the national scale; however, catchment-scale analysis highlights that difference in RS ET and WB ET decreases with increasing catchment size and that 90%, 87%, and 93% of all catchments have ∆ET < ±150 mm/year for MODIS16, PML_V2, and TSEB, respectively. In addition, Copula approach captures a nonlinear structure of the joint relationship with multiple densities amongst the RS/WB ET products, showing a complex dependence structure (correlation); however, among the three RS ET datasets, MODIS16 ET shows a closer spatial pattern to the modified WB ET, as identified by a principal component analysis also. This study will help improve the water balance approach by the addition of groundwater net in the ET estimation and contribute to better understand the true correlations amongst RS/WB ET products especially over energy-limited environments.


2018 ◽  
Author(s):  
Youssef Wehbe ◽  
Marouane Temimi ◽  
Michael Weston ◽  
Naira Chaouch ◽  
Oliver Branch ◽  
...  

Abstract. This study investigates an extreme weather event that impacted the United Arab Emirates (UAE) in March 2016 using the Weather Research and Forecasting (WRF) model version 3.7.1 coupled with its hydrological modeling extension package (Hydro). Six-hourly forecasted forcing records at 0.5o spatial resolution, obtained from the NCEP Global Forecast System (GFS), are used to drive the three nested downscaling domains of both standalone WRF and coupled WRF/WRF-Hydro configurations for the recent flood-triggering storm. Ground and satellite observations over the UAE are employed to validate the model results. Precipitation, soil moisture, and cloud fraction retrievals from GPM (30-minute, 0.1o product), AMSR2 (daily, 0.1o product), and MODIS (daily, 5 km product), respectively, are used to assess the model output. The Pearson correlation coefficient (PCC), relative bias (rBIAS) and root-mean-square error (RMSE) are used as performance measures. Results show reductions of 24 % and 13 % in RMSE and rBIAS measures, respectively, in precipitation forecasts from the coupled WRF/WRF-Hydro model configuration, when compared to standalone WRF. The coupled system also shows improvements in global radiation forecasts, with reductions of 45 % and 12 % for RMSE and rBIAS, respectively. Moreover, WRF-Hydro was able to simulate the spatial distribution of soil moisture reasonably well across the study domain when compared to AMSR2 satellite soil moisture estimates, despite a noticeable dry/wet bias in areas where soil moisture is high/low. The demonstrated improvement, at the local scale, implies that WRF-Hydro coupling may enhance hydrologic forecasts and flash flood guidance systems in the region.


2015 ◽  
Vol 54 (8) ◽  
pp. 1809-1825 ◽  
Author(s):  
Yaodeng Chen ◽  
Hongli Wang ◽  
Jinzhong Min ◽  
Xiang-Yu Huang ◽  
Patrick Minnis ◽  
...  

AbstractAnalysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.


Sign in / Sign up

Export Citation Format

Share Document