Integrating multiple geotechnical data types with machine learning to construct high-resolution 3D geological models

Author(s):  
Willem Dabekaussen ◽  
Renée de Bruijn ◽  
Romée H. Kars ◽  
Bart M.L. Meijninger ◽  
Jan Stafleu

<p>In the central and western parts of the Netherlands, the low-lying areas are vulnerable to flooding by rivers. During times of peak runoff, dikes are essential to keep the land dry and the people safe. Rigorous safety standards are in place to ensure dikes are capable of withstanding extreme water level conditions. Key components for the strength and stability of a dike are the internal structure and composition of the dike and the geology in the subsurface: a sandy aquifer may lead to piping and undercutting of the dike while weak or layered strata under certain hydraulic pressures could potentially lead to collapse and catastrophic failure of the dike.</p><p>For the dike reinforcement project ‘Sterke Lekdijk’, the regional water authority ‘Hoogheemraadschap de Stichtse Rijnlanden’ is investigating a 55 km long section of the dike along the right bank of the river Lek. Detailed knowledge about the subsurface is crucial when quantifying the conditions of dikes. Given the very heterogeneous build-up of the Holocene sediments this is not an easy task. For the shallow subsurface (down to 50 m below surface level) TNO – Geological Survey of the Netherlands builds and maintains a nation-wide stochastic 3D geological model called GeoTOP. With a 100x100x0.5 m voxel size this model gives a sense of the overall geology, but lacks the very detailed information below the dikes that is needed for the task at hand.</p><p>Construction of a high-resolution geological model requires a high data density. Traditionally, shallow geological models are based on borehole information. However, in the built environment another data source is available in the form of cone penetration tests (CPTs), which are routinely obtained to measure the strength of subsurface sediments for geotechnical purposes. Although classification charts are available to translate CPT measurements into lithological classes, these charts require adjustments for local use and resulting performance remains variable. To enable the use of CPTs for geological modelling an artificial neural network (ANN) was trained to translate CPT measurements to lithological classes. Training of the ANN was done on neighboring borehole-CPT pairs (spaced at max. 10 meters). The ANN produces realistic results, with cross-validation statistics showing a vast increase in performance of the ANN results compared to traditional classification charts.</p><p>The disclosure of CPTs for geological modelling greatly increases the data density along man-made structures such as dikes. A local high-resolution version of the GeoTOP model was constructed, with a voxel size of 25x25x0.25 m. This detailed information includes the lithostratigraphical unit the voxel belongs to, the most probable lithological class of the voxel as well as the probability of occurrence of particular lithological classes. The high-resolution model enables the local water authority to better estimate dike stability, better target additional measurements in areas of high uncertainty, and take more location specific reinforcement measures.</p>

2018 ◽  
Vol 31 ◽  
pp. 24 ◽  
Author(s):  
Kristian Schreiber Plet-Hansen ◽  
Erling Larsen ◽  
Lars Olof Mortensen ◽  
J. Rasmus Nielsen ◽  
Clara Ulrich

Fisheries science and fisheries management advice rely on both scientific and commercial data to estimate the distribution and abundance of marine species. These two data types differ, with scientific data having a broader geographical coverage but less intensity and time coverage compared to commercial data. Here we present a new type of commercial data with high resolution and coverage. To our knowledge, the dataset presented in this study has never been used for scientific purposes. While commercial datasets usually include the total weight by species on per haul basis, the new data also include the commercial size class for the species landed, recorded directly on a haul-by-haul basis. Thus, this dataset has the potential to provide knowledge on landed fish with as high spatio-temporal resolution as when coupling logbooks and sales slips but with the addition of detailed knowledge on the size distribution. Such information may otherwise be obtained through on-board observer programmes but unlike the observers’ data, the dataset presented here is routinely collected on most of the trips of the vessels involved, which means that the coverage of the data for the individual vessel is larger than observers’ data. Furthermore, the risk of changes in fishing behaviour due to the presence of an observer on-board is avoided. This paper describes the coverage and completeness of the dataset, and explores the reliability of the data available. We conclude that the main limitation is the small number of fishing vessels covered by the program, but that the data from those vessels are accurate, detailed, and relatively reliable.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


2015 ◽  
Vol 35 ◽  
pp. 104-108
Author(s):  
Marta Della Seta ◽  
Carlo Esposito ◽  
Gian Marco Marmoni ◽  
Salvatore Martino ◽  
Antonella Paciello ◽  
...  

2020 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Pengfei Zhou ◽  
Jason Eshraghian ◽  
Chih-Yang Lin ◽  
Herbert Ho-Ching Iu ◽  
...  

<div>This paper presents the first experimental demonstration</div><div>of a ternary memristor-CMOS logic family. We systematically</div><div>design, simulate and experimentally verify the primitive</div><div>logic functions: the ternary AND, OR and NOT gates. These are then used to build combinational ternary NAND, NOR, XOR and XNOR gates, as well as data handling ternary MAX and MIN gates. Our simulations are performed using a 50-nm process which are verified with in-house fabricated indium-tin-oxide memristors, optimized for fast switching, high transconductance, and low current leakage. We obtain close to an order of magnitude improvement in data density over conventional CMOS logic, and a reduction of switching speed by a factor of 13 over prior state-of-the-art ternary memristor results. We anticipate extensions of this work can realize practical implementation where high data density is of critical importance.</div>


2020 ◽  
Vol 12 (7) ◽  
pp. 1218
Author(s):  
Laura Tuşa ◽  
Mahdi Khodadadzadeh ◽  
Cecilia Contreras ◽  
Kasra Rafiezadeh Shahi ◽  
Margret Fuchs ◽  
...  

Due to the extensive drilling performed every year in exploration campaigns for the discovery and evaluation of ore deposits, drill-core mapping is becoming an essential step. While valuable mineralogical information is extracted during core logging by on-site geologists, the process is time consuming and dependent on the observer and individual background. Hyperspectral short-wave infrared (SWIR) data is used in the mining industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method for mineralogical characterization. Additionally, Scanning Electron Microscopy-based image analyses using a Mineral Liberation Analyser (SEM-MLA) provide exhaustive high-resolution mineralogical maps, but can only be performed on small areas of the drill-cores. We propose to use machine learning algorithms to combine the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling approach increases result transparency and reproducibility by employing physical-based data acquisition (hyperspectral imaging) combined with mathematical models (machine learning). The procedure is tested on 5 drill-core samples with varying training data using random forests, support vector machines and neural network regression models. The obtained mineral abundance maps are further used for the extraction of mineralogical parameters such as mineral association.


2013 ◽  
Vol 734-737 ◽  
pp. 3011-3015
Author(s):  
Sheng Yun Yu ◽  
Chang He Song ◽  
Hai Ying Xu

The data of three-dimension geological models are very large, this kind of three -dimension geological model can not be directly used for numerical simulation and must be scaled down. The reservoir parameters, especially permeability, are scaled down by the simple renormalization method. The interbeds and parts of strong heterogeneity are filled back. The simple renormalization method is good through evaluation , not only it reduces the number of grid points, but also retains reservoir heterogeneity.


2021 ◽  
Author(s):  
Lucie Guillen ◽  
Séverine Caritg ◽  
Pierre Bourbon ◽  
Thomas Dewez ◽  
Clara Lévy ◽  
...  

&lt;p&gt;A 3D litho-structural model synthetizes a geological setting by defining 3D geometries of lithological layers considering stratigraphic relationships, weathering and tectonics. It combines quantitative and qualitative data from different dimensions and acquisition types (field measures and observations, geophysics, boreholes, DEM) into a single structured database. This aesthetic 3D representation enables to work on the same object, despite different sources of datasets, making it a highly useful integrative tool for various ways to monitor and analyze landslides prone areas.&lt;/p&gt;&lt;p&gt;This type of model is used on site scale for large phenomena, for a better understanding of their internal structure and to extract information to be included for failure numerical modelling. However, there are a very few examples of 3D geological models used for large areas subject to spatially limited events. Indeed, the transition from 2D to 3D information remains difficult, especially in case of sparse input data, reinforcing 3D interpretation uncertainties and decreasing the robustness of the model. Thus, most of regional scale geological 3D models used for landslides analyses are simplified and the different lithological layers used for susceptibility and hazard assessments suffer from uncertainties difficult to quantify.&lt;/p&gt;&lt;p&gt;The aim of this contribution is to show how two local scale 3D geological models can contribute and improve the robustness of a regional 3D geological model for the purpose of landslide susceptibility and hazard assessment. The local and regional 3D geological models integrate different data types of uneven quality by successive iterations, to interpret structural and lithological layers geometries with GeoModeller. This software is based on cokriging calculation method of orientation and location of geological interfaces and faults. The regional model will be compared to the local 3D models results, as references to assess regional model uncertainties. This iterative process enables to improve each 3D model with different data sets from one scale to another. Still, models results must be confirmed by field validation to reduce uncertainties as much as possible.&lt;/p&gt;&lt;p&gt;This study focuses on the 40 km long French Basque coast in the southwest of France, which presents complex faulting and geological heterogeneities inherited from the Pyrenean orogeny &amp;#8211; these are relatively well mapped along the shore. Both of the local sites are different and characteristic of regional coastal geomorphological types and of specific lithological formations. These are made of flyschs, limestones and marls, the top of which are more or less weathered and capped by Quaternary detritic formations of variable thickness. This coast is subject to various types of shallow and moderately deep instabilities (slides, rockfalls and flows). By defining the geometry of lithology and faults, the 3D models results will enable to:&lt;/p&gt;&lt;ul&gt;&lt;li&gt;Characterize how lithology and structures, as predisposition factors, influence landslides susceptibility to specific landslide types,&lt;/li&gt; &lt;li&gt;Integrate lithological layers and structural discontinuities to physical-based models to assess landslide susceptibility and hazard on regional (1 : 25,000) and on local (1 : 2,500) scales,&lt;/li&gt; &lt;li&gt;Improve the geological knowledge of the French Basque coast.&lt;/li&gt; &lt;/ul&gt;


2016 ◽  
Author(s):  
Felicity S. Graham ◽  
Jason L. Roberts ◽  
Ben K. Galton-Fenzi ◽  
Duncan Young ◽  
Donald Blankenship ◽  
...  

Abstract. Digital elevation models of Antarctic bed topography are heavily smoothed and interpolated onto low-resolution (> 1 km) grids as our current observed topography data are generally sparsely and unevenly sampled. This issue has potential implications for numerical simulations of ice-sheet dynamics, especially in regions prone to instability where detailed knowledge of the topography, including fine-scale roughness, is required. Here, we present a high-resolution (100 m) synthetic bed elevation terrain for the whole Antarctic continent. The synthetic bed surface preserves topographic roughness characteristics of airborne and ground-based ice-penetrating radar data from the Bedmap1 compilation and the ICECAP consortium. Broad-scale features of the Antarctic landscape are incorporated using a low-pass filter of the Bedmap2 bed-elevation data. Although not intended as a substitute for Bedmap2, the simulated bed elevation terrain has applicability in high-resolution ice-sheet modelling studies, including investigations of the interaction between topography, ice-sheet dynamics, and hydrology, where processes are highly sensitive to bed elevations. The data are available for download at the Australian Antarctic Data Centre (doi:10.4225/15/57464ADE22F50).


2021 ◽  
Author(s):  
Mark Jessell

&lt;p&gt;In geological settings characterised by folded and faulted strata, and where good field data exist, we have been able to automate a large part of the 3D modelling process directly from the raw geological database (maps, bedding orientations and drillhole data). The automation is based upon the deconstruction of the geological maps and databases into positional, gradient and spatial and temporal topology information, and the combination of deconstructed data into augmented inputs for 3D geological modelling systems, notably LoopStructural and GemPy.&lt;/p&gt;&lt;p&gt;When we try to apply this approach to more complex terranes, such as greenstone belts, we come across two types of problem:&lt;/p&gt;&lt;ul&gt;&lt;li&gt;1) Insufficient structural data, since the more complexly deformed the geology, the more we need to rely on secondary structural information, such as fold axial traces and vergence to &amp;#8216;solve&amp;#8217; the structures. Unfortunately these types of data are not always stored in national geological databases. One approach to overcoming this is to analyse the simpler (i.e. bedding) data to try and estimate the secondary information automatically.&lt;/li&gt; &lt;/ul&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;ul&gt;&lt;li&gt;2) The available information is unsuited to the logic of the modelling system. Most modern modelling platforms assume the knowledge of a chronostratigraphic hierarchy, however, especially in more complexly deformed regions, a lithostratigraphy may be all that is available. Again a pre-processing of the map and stratigraphic information may be possible to overcome this problem.&lt;/li&gt; &lt;/ul&gt;&lt;p&gt;This presentation will highlight the progress that has been made, as well as the road-blocks to universal automated 3D geological model construction.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We acknowledge the support of the MinEx CRC and the Loop: Enabling Stochastic 3D Geological Modelling (LP170100985) consortia. The work has been supported by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme. This is MinEx CRC Document 2020/xxx.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document