Modeling the effects and feedbacks of irrigation on the regional climate in Northern Italy

Author(s):  
Christina Asmus ◽  
Peter Hoffmann ◽  
Diana Rechid ◽  
Jürgen Böhner

<p><span>Large parts of the earth’s land surface are modified by humans. Since the land surface and the atmosphere are constantly in energy exchange and in interactions with each other, anthropogenic modifications of the land’s surface can lead to effects on the climate. The objective of this study is to quantify and investigate the effects and feedbacks of irrigation on the local to regional climate. Irrigation is a land use practice, which does not change the land cover type but changes the biophysical properties of the land’s surface and the soil and thus alters energy and moisture fluxes. These local to regional process responses, detectable in different meteorological variables, are investigated using the regional climate model REMO. High resolution simulations at convection permitting scales will be performed in order to particularly investigate irrigation effects on the spatiotemporal behavior of moist convection. Newly developed parameterizations of different types of irrigation are tested on the example of a northern Italian model domain, where cropland and rice paddies are the dominating land cover. The focus of the sensitivity study is on the impact of the parameterizations on the surface moisture and energy balance as well as on heavy rainfall events. </span></p>

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Peng Cai ◽  
Rafiq Hamdi ◽  
Huili He ◽  
Geping Luo ◽  
Jin Wang ◽  
...  

The rapid oasis expansion and urbanization that occurred in Xinjiang province (China) in the last decades have greatly modified the land surface energy balance and influenced the local circulation under the arid mountains-plain background system. In this study, we first evaluated the ALARO regional climate model coupled to the land surface scheme SURFEX at 4 km resolution using 53 national climatological stations and 5 automatic weather stations. We found that the model correctly simulates daily and hourly variation of 2 m temperature and relative humidity. A 4-day clear sky period has been chosen to study both local atmospheric circulations and their mutual interaction. Observations and simulations both show that a low-level divergence over oasis appears between 19:00 and 21:00 Beijing Time when the background mountain-plain wind system is weak. The model simulates a synergistic interaction between the oasis-desert breeze and urban-rural breeze from 16:00 until 22:00 with a maximum effect at 20:00 when the downdraft over oasis (updraft over urban) areas increases by 0.8 (0.4) Pa/s. The results show that the oasis expansion decreases the nocturnal urban heat island in the city of Urumqi by 0.8 °C, while the impact of urban expansion on the oasis cold island is negligible.


2015 ◽  
Vol 8 (7) ◽  
pp. 2285-2298 ◽  
Author(s):  
A. I. Stegehuis ◽  
R. Vautard ◽  
P. Ciais ◽  
A. J. Teuling ◽  
D. G. Miralles ◽  
...  

Abstract. Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface scheme, with the goal of detecting the most sensitive physics and identifying those that appear most suitable for simulating the heat wave events of 2003 in western Europe and 2010 in Russia. In total, 55 out of 216 simulations combining different atmospheric physical schemes have a temperature bias smaller than 1 °C during the heat wave episodes, the majority of simulations showing a cold bias of on average 2–3 °C. Conversely, precipitation is mostly overestimated prior to heat waves, and shortwave radiation is slightly overestimated. Convection is found to be the most sensitive atmospheric physical process impacting simulated heat wave temperature across four different convection schemes in the simulation ensemble. Based on these comparisons, we design a reduced ensemble of five well performing and diverse scheme configurations, which may be used in the future to perform heat wave analysis and to investigate the impact of climate change during summer in Europe.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 709
Author(s):  
Gabriella Zsebeházi ◽  
Sándor István Mahó

Land surface models with detailed urban parameterization schemes provide adequate tools to estimate the impact of climate change in cities, because they rely on the results of the regional climate model, while operating on km scale at low cost. In this paper, the SURFEX land surface model driven by the evaluation and control runs of ALADIN-Climate regional climate model is validated over Budapest from the aspect of urban impact on temperature. First, surface temperature of SURFEX with forcings from ERA-Interim driven ALADIN-Climate was compared against the MODIS land surface temperature for a 3-year period. Second, the impact of the ARPEGE global climate model driven ALADIN-Climate was assessed on the 2 m temperature of SURFEX and was validated against measurements of a suburban station for 30 years. The spatial extent of surface urban heat island (SUHI) is exaggerated in SURFEX from spring to autumn, because the urbanized gridcells are generally warmer than their rural vicinity, while the observed SUHI extent is more variable. The model reasonably simulates the seasonal means and diurnal cycle of the 2 m temperature in the suburban gridpoint, except summer when strong positive bias occurs. However, comparing the two experiments from the aspect of nocturnal UHI, only minor differences arose. The thorough validation underpins the applicability of SURFEX driven by ALADIN-Climate for future urban climate projections.


2005 ◽  
Vol 2 (4) ◽  
pp. 1503-1535 ◽  
Author(s):  
Y. A. Mohamed ◽  
H. H. G. Savenije ◽  
W. G. M. Bastiaanssen ◽  
B. J. J. M. van den Hurk

Abstract. Despite its local and regional importance, hydro-meteorological data on the Sudd (one of Africa's largest wetlands) is very scanty. This is due to the physical and political situation of this area of Sudan. The areal size of the wetland, the evaporation rate, and the influence on the micro and meso climate are still unresolved questions of the Sudd hydrology. The evaporation flux from the Sudd wetland has been estimated using thermal infrared remote sensing data and a parameterization of the surface energy balance (SEBAL model). It is concluded that the actual spatially averaged evaporation from the Sudd wetland over 3 years of different hydrometeorological characteristics varies between 1460 and 1935 mm/yr. This is substantially less than open water evaporation. The wetland area appears to be 70% larger than previously assumed when the Sudd was considered as an open water body. The groundwater table characterizes a distinct seasonality, confirming that substantial parts of the Sudd are seasonal swamps. The new set of spatially distributed evaporation parameters from remote sensing form an important dataset for calibrating a regional climate model enclosing the Nile Basin. The Regional Atmospheric Climate Model (RACMO) provides an insight not only into the temporal evolution of the hydro-climatological parameters, but also into the land surface climate interactions and embedded feedbacks. The impact of the flooding of the Sudd on the Nile hydroclimatology has been analysed by simulating two land surface scenarios (with and without the Sudd wetland). The paper presents some of the model results addressing the Sudd's influence on rainfall, evaporation and runoff of the river Nile, as well as the influence on the microclimate.


2021 ◽  
Author(s):  
Giannis Sofiadis ◽  
Eleni Katragkou ◽  
Edouard L. Davin ◽  
Diana Rechid ◽  
Nathalie de Noblet-Ducoudre ◽  
...  

Abstract. In the context of the first phase of the Euro-CORDEX Flagship Plot Study (FPS) Land Use and Climate Across Scales (LUCAS), we investigate the afforestation impact on the seasonal cycle of soil temperature over the European continent with an ensemble of ten regional climate models (RCMs). For this purpose, each ensemble member performed two idealized land cover experiments in which Europe is covered either by forests or grasslands. The multi-model mean exhibits a reduction of the annual amplitude of soil temperature (AAST) over all European regions, although this not a robust feature among the models. In Mediterranean, the simulated AAST response to afforestation is between −4 K and +2 K while in Scandinavia the inter-model spread ranges from −7 K to +1 K. We then examine the role of changes in the annual amplitude of ground heat flux (AAGHF) and summer soil moisture content (SMC) in determining the effect of afforestation on AAST response. In contrast with the diverging results in AAST, all the models consistently indicate a widespread AAGHF decrease and summer SMC decline due to afforestation. The AAGHF changes effectively explain the largest part of the inter-model variance in AAST response in most regions, while the changes in summer SMC determine the sign of AAST response within a group of three simulations sharing the same land surface model. Finally, we pair FLUXNET sites to compare the simulated results with observation-based evidence of the impact of forest on soil temperature. In line with models, observations indicate a summer ground cooling in forested areas compared to open lands. The vast majority of models agree with the sign of the observed reduction in AAST, although with a large variation in the magnitude of changes. Overall, we aspire to emphasize the effects of afforestation on soil temperature profile with this study, given that changes in the seasonal cycle of soil temperature potentially perturb crucial biochemical processes. Such perturbations can be of societal relevance as afforestation is proposed as a climate change mitigation strategy.


Author(s):  
Catherine A Senior ◽  
John H Marsham ◽  
Sègoléne Berthou ◽  
Laura E Burgin ◽  
Sonja S Folwell ◽  
...  

AbstractPan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly effects of explicit convection affect not only projected changes in rainfall extremes, dry-spells and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change mean that we can provide regional decision makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the UK Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international co-ordination of such computationally, and human-resource expensive simulations as effectively as possible.


2009 ◽  
Vol 22 (12) ◽  
pp. 3248-3269 ◽  
Author(s):  
Kirsten L. Findell ◽  
Andrew J. Pitman ◽  
Matthew H. England ◽  
Philip J. Pegion

Abstract The atmospheric and land components of the Geophysical Fluid Dynamics Laboratory’s (GFDL’s) Climate Model version 2.1 (CM2.1) is used with climatological sea surface temperatures (SSTs) to investigate the relative climatic impacts of historical anthropogenic land cover change (LCC) and realistic SST anomalies. The SST forcing anomalies used are analogous to signals induced by El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the background global warming trend. Coherent areas of LCC are represented throughout much of central and eastern Europe, northern India, southeastern China, and on either side of the ridge of the Appalachian Mountains in North America. Smaller areas of change are present in various tropical regions. The land cover changes in the model are almost exclusively a conversion of forests to grasslands. Model results show that, at the global scale, the physical impacts of LCC on temperature and rainfall are less important than large-scale SST anomalies, particularly those due to ENSO. However, in the regions where the land surface has been altered, the impact of LCC can be equally or more important than the SST forcing patterns in determining the seasonal cycle of the surface water and energy balance. Thus, this work provides a context for the impacts of LCC on climate: namely, strong regional-scale impacts that can significantly change globally averaged fields but that rarely propagate beyond the disturbed regions. This suggests that proper representation of land cover conditions is essential in the design of climate model experiments, particularly if results are to be used for regional-scale assessments of climate change impacts.


2017 ◽  
Vol 58 (75pt1) ◽  
pp. 1-10 ◽  
Author(s):  
Waqar Younas ◽  
Rachel W. Hay ◽  
Matt K. MacDonald ◽  
Siraj ul Islam ◽  
Stephen J. Déry

ABSTRACTThis sensitivity study applies the offline Canadian Land Surface Scheme (CLASS) version 3.6 to simulate snowpack evolution in idealized topography using observations at Likely, British Columbia, Canada over 1 July 2008 to 30 June 2009. A strategy for a subgrid-scale snow (SSS) parameterization is developed to incorporate two key features: ten elevation bands at 100 m intervals to capture air temperature lapse rates, and five slope angles on four aspects to resolve solar radiation impacts on the evolution of snow depth and SWE. Simulations reveal strong elevational dependencies of snow depth and SWE when adjusting temperatures using a moist adiabatic lapse rate with elevation, with 26% peak SWE differences between that at the average elevation versus the mean of the remainder of the elevation bands. Differences in peak SWE on north- and south-facing slopes increase from 3.0 mm at 10° slope to 17.9 mm at 50° slope. When applied to elevation, slope and aspect combinations derived from a high-resolution digital elevation model, elevation dominates the control of peak SWE values. Inclusion of the range of SSS effects into a regional climate model will improve snowpack and hydrological simulations of western North America's snow-dominated, mountainous watersheds.


2006 ◽  
Vol 10 (7) ◽  
pp. 1-27 ◽  
Author(s):  
G. T. Narisma ◽  
A. J. Pitman

Abstract The potential role of the impacts of land-cover changes (LCCs) in the Australian climate is investigated within the context of increasing CO2 concentrations and temperature. Specifically, it is explored if possible scenarios for LCC can moderate or amplify CO2-induced changes in climate over Australia. The January climate of Australia is simulated under three different land-cover-change scenarios using a high-resolution regional climate model. The land-cover-change scenarios include a steady-state land cover that is equivalent to current land cover, a low-reforestation scenario that recovers approximately 25% of the trees replaced by grasslands within the last 200 yr, and a high-reforestation scenario that recovers at least 75% of the deforested regions. The model was driven by boundary conditions taken from transitory climate simulations from a general circulation model that included two climate scenarios based on two projected scenarios of CO2 concentration increase. The results show that reforestation has the potential to reduce the projected increase in Australian temperatures in 2050 and 2100 by as much as 40% and 20%, respectively. This cooling effect, however, is highly localized and occurs only in regions of reforestation. The results therefore hint that the potential of reforestation to moderate the impact of global warming may be significantly limited by the spatial scale of reforestation. In terms of deforestation, results show that any future land clearing can exacerbate the projected warming in certain regions of Australia. Carbon-related variables are also analyzed and results show that changes in net CO2 flux may be influenced more by soil respiration than by photosynthesis. The results herein encourage studies on the inclusion of land-cover-change scenarios in future climate change projection simulations of the Australian climate.


Sign in / Sign up

Export Citation Format

Share Document