scholarly journals Coupling of Arctic ozone and stratospheric dynamics and its influence on surface climate: the role of CFC concentrations.

Author(s):  
Marina Friedel ◽  
Gabriel Chiodo ◽  
Stefan Muthers ◽  
Julien Anet ◽  
Andrea Stenke ◽  
...  

<p>Arctic stratospheric ozone has been shown to exert a statistically significant influence on Northern Hemispheric surface climate. This suggests that Arctic ozone is not only passively responding to dynamical variability in the stratosphere, but actively feeds back into the circulation through chemical and radiative processes. However, the extent and causality of the chemistry-dynamics coupling is still unknown. Since many state-of-the-art climate models lack a sufficient representation of ozone-dynamic feedbacks, a quantification of this coupling can be used to improve intra-seasonal weather and long-term climate forecasts.</p><p>We assess the importance of the ozone-dynamics coupling by performing simulations with and without interactive chemistry in two Chemistry Climate Models. The chemistry-dynamics coupling was examined in two different sets of time-slice simulations: one using pre-industrial, and one using year-2000 boundary conditions. We focus on the impact of sudden stratospheric warmings (SSW) and strong vortex events on stratosphere-troposphere coupling, since these go along with strong ozone anomalies and therefore an intensified ozone feedback.  We compare the runs with and without interactive chemistry.</p><p>For pre-industrial conditions, simulations without interactive ozone show a more intense and longer lasting surface signature of SSWs compared to simulations with interactive chemistry. Conversely, for year-2000 conditions, the opposite effect is found: interactive chemistry amplifies the surface signature of SSWs. Following these results, atmospheric CFC concentrations, which differ greatly in the pre-industrial and year-2000 runs, determine the sign of the ozone-circulation feedback, and thus have a strong impact on chemistry-climate coupling. Implications for modeling of stratosphere-troposphere coupling and future projections are discussed.</p>

2017 ◽  
Author(s):  
Amanda C. Maycock ◽  
Katja Matthes ◽  
Susann Tegtmeier ◽  
Hauke Schmidt ◽  
Rémi Thiéblemont ◽  
...  

Abstract. The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate model simulations to fully capture the atmospheric response to solar variability. This study presents the first systematic comparison of the solar-ozone response (SOR) during the 11 year solar cycle amongst different chemistry-climate models (CCMs) and ozone databases specified in climate models that do not include chemistry. We analyse the SOR in eight CCMs from the WCRP/SPARC Chemistry-Climate Model Initiative (CCMI-1) and compare these with three ozone databases: the Bodeker Scientific database, the SPARC/AC&C database for CMIP5, and the SPARC/CCMI database for CMIP6. The results reveal substantial differences in the representation of the SOR between the CMIP5 and CMIP6 ozone databases. The peak amplitude of theSOR in the upper stratosphere (1–5 hPa) decreases from 5 % to 2 % between the CMIP5 and CMIP6 databases. This difference is because the CMIP5 database was constructed from a regression model fit to satellite observations, whereas the CMIP6 database is constructed from CCM simulations, which use a spectral solar irradiance (SSI) dataset with relatively weak UV forcing. The SOR in the CMIP6 ozone database is therefore implicitly more similar to the SOR in the CCMI-1 models than to the CMIP5 ozone database, which shows a greater resemblance in amplitude and structure to the SOR in the Bodeker database. The latitudinal structure of the annual mean SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows strong gradients in the SOR across the midlatitudes owing to the paucity of observations at high latitudes. The SORs in the CMIP6 ozone database and in the CCMI-1 models show a strong seasonal dependence, including large meridional gradients at mid to high latitudes during winter; such seasonal variations in the SOR are not included in the CMIP5 ozone database. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the impact of changes in the representation of the SOR and SSI forcing between CMIP5 and CMIP6. The experiments show that the smaller amplitude of the SOR in the CMIP6 ozone database compared to CMIP5 causes a decrease in the modelled tropical stratospheric temperature response over the solar cycle of up to 0.6 K, or around 50 % of the total amplitude. The changes in the SOR explain most of the difference in the amplitude of the tropical stratospheric temperature response in the case with combined changes in SOR and SSI between CMIP5 and CMIP6. The results emphasise the importance of adequately representing the SOR in climate models to capture the impact of solar variability on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, CMIP6 models without chemistry are encouraged to use the CMIP6 ozone database to capture the climate impacts of solar variability.


2016 ◽  
Vol 29 (12) ◽  
pp. 4651-4663 ◽  
Author(s):  
G. Chiodo ◽  
L. M. Polvani

Abstract An accurate assessment of the role of solar variability is a key step toward a proper quantification of natural and anthropogenic climate change. To this end, climate models have been extensively used to quantify the solar contribution to climate variability. However, owing to the large computational cost, the bulk of modeling studies to date have been performed without interactive stratospheric photochemistry: the impact of this simplification on the modeled climate system response to solar forcing remains largely unknown. Here this impact is quantified by comparing the response of two model configurations, with and without interactive ozone chemistry. Using long integrations, robust surface temperature and precipitation responses to an idealized irradiance increase are obtained. Then, it is shown that the inclusion of interactive stratospheric chemistry significantly reduces the surface warming (by about one-third) and the accompanying precipitation response. This behavior is linked to photochemically induced stratospheric ozone changes, and their modulation of the surface solar radiation. The results herein suggest that neglecting stratospheric photochemistry leads to a sizable overestimate of the surface response to changes in solar irradiance. This has implications for simulations of the climate in the last millennium and geoengineering applications employing irradiance changes larger than those observed over the 11-yr sunspot cycle, where models often use simplified treatments of stratospheric ozone that are inconsistent with the imposed solar forcing.


2021 ◽  
Author(s):  
Marina Friedel ◽  
Gabriel Chiodo ◽  
Andrea Stenke ◽  
Daniela Domeisen ◽  
Stephan Fueglistaler ◽  
...  

Abstract Massive spring ozone loss due to anthropogenic emissions of ozone depleting substances is not limited to the austral hemisphere, but can also occur in the Arctic. Previous studies have suggested a link between springtime Arctic ozone depletion and Northern Hemispheric surface climate, which might add surface predictability. However, so far it has not been possible to isolate the role of stratospheric ozone from dynamical downward impacts. For the first time, we quantify the impact of springtime Arctic ozone depletion on surface climate using observations and targeted chemistry-climate model experiments to isolate the effects of ozone feedbacks. We find that springtime stratospheric ozone depletion is followed by surface anomalies in precipitation and temperature resembling a positive Arctic Oscillation. Most notably, we show that these anomalies, affecting large portions of the Northern Hemisphere, cannot be explained by dynamical variability alone, but are to a significant degree driven by stratospheric ozone. The surface signal is linked to reduced shortwave absorption by stratospheric ozone, forcing persistent negative temperature anomalies in the lower stratosphere and a delayed breakup of the polar vortex - analogous to ozone-surface coupling in the Southern Hemisphere.These results suggest that Arctic stratospheric ozone actively forces springtime Northern Hemispheric surface climate and thus provides a source of predictability on seasonal scales.


2018 ◽  
Vol 18 (15) ◽  
pp. 11323-11343 ◽  
Author(s):  
Amanda C. Maycock ◽  
Katja Matthes ◽  
Susann Tegtmeier ◽  
Hauke Schmidt ◽  
Rémi Thiéblemont ◽  
...  

Abstract. The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate simulations to aid in capturing the atmospheric response to solar cycle variability. This study presents the first systematic comparison of the representation of the 11-year solar cycle ozone response (SOR) in chemistry–climate models (CCMs) and in pre-calculated ozone databases specified in climate models that do not include chemistry, with a special focus on comparing the recommended protocols for the Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6). We analyse the SOR in eight CCMs from the Chemistry–Climate Model Initiative (CCMI-1) and compare these with results from three ozone databases for climate models: the Bodeker Scientific ozone database, the SPARC/Atmospheric Chemistry and Climate (AC&C) ozone database for CMIP5 and the SPARC/CCMI ozone database for CMIP6. The peak amplitude of the annual mean SOR in the tropical upper stratosphere (1–5 hPa) decreases by more than a factor of 2, from around 5 to 2 %, between the CMIP5 and CMIP6 ozone databases. This substantial decrease can be traced to the CMIP5 ozone database being constructed from a regression model fit to satellite and ozonesonde measurements, while the CMIP6 database is constructed from CCM simulations. The SOR in the CMIP6 ozone database therefore implicitly resembles the SOR in the CCMI-1 models. The structure in latitude of the SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows unrealistic sharp gradients in the SOR across the middle latitudes owing to the paucity of long-term ozone measurements in polar regions. The SORs in the CMIP6 ozone database and the CCMI-1 models show a seasonal dependence with enhanced meridional gradients at mid- to high latitudes in the winter hemisphere. The CMIP5 ozone database does not account for seasonal variations in the SOR, which is unrealistic. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the atmospheric impacts of changes in the representation of the SOR and solar spectral irradiance (SSI) forcing between CMIP5 and CMIP6. The larger amplitude of the SOR in the CMIP5 ozone database compared to CMIP6 causes a likely overestimation of the modelled tropical stratospheric temperature response between 11-year solar cycle minimum and maximum by up to 0.55 K, or around 80 % of the total amplitude. This effect is substantially larger than the change in temperature response due to differences in SSI forcing between CMIP5 and CMIP6. The results emphasize the importance of adequately representing the SOR in global models to capture the impact of the 11-year solar cycle on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, we recommend that CMIP6 models without chemistry use the CMIP6 ozone database and the CMIP6 SSI dataset to better capture the climate impacts of solar variability. The SOR coefficients from the CMIP6 ozone database are published with this paper.


2020 ◽  
Author(s):  
Simon Chabrillat ◽  
Vincent Huijnen ◽  
Quentin Errera ◽  
Jonas Debosscher ◽  
Idir Bouarar ◽  
...  

<p>Intercomparisons between Chemistry-Climate Models (CCMs) have highlighted shortcomings in our understanding and/or modeling of long-term ozone trends, and there is a growing interest in the impact of stratospheric ozone changes on tropospheric chemistry via both ozone fluxes (e.g. from the projected strengthening of the Brewer-Dobson circulation) and actinic fluxes. Advances in this area require a good understanding of the modelling uncertainties in the present-day distribution of stratospheric ozone, and a correct attribution of these uncertainties to the processes governing this distribution: photolysis, chemistry and transport. These processes depend primarily on solar irradiance, temperature and dynamics.</p><p>Here we estimate model uncertainties arising from different input datasets, and compare them with typical uncertainties arising from the transport and chemistry schemes. This study is based on four sets of tightly controlled sensititivity experiments which all use temperature and dynamics specified from reanalyses of meteorological observations. The first set of experiments uses one Chemistry-Transport Model (CTM) and evaluates the impact of using 3 different spectra of solar irradiance. In the second set, the CTM is run with 4 different input reanalyses: ERA-5, MERRA-2, ERA-I and JRA-55. The third set of experiments still relies on the same CTM, exploring the impact of the transport algorithm and its configuration. The fourth set is the most sophisticated as it is enabled by model developments for the Copernicus Atmopshere Monitoring Service, where the ECMWF model IFS is run with three different photochemistry modules named according to their parent CTM: IFS(CB05-BASCOE), IFS(MOCAGE) and IFS(MOZART).</p><p>All modelling experiments start from the same initial conditions and last 2.5 years (2013-2015). The uncertainties arising from different input datasets or different model components are estimated from the spreads in each set of sensitivity experiments and also from the gross error between the corresponding model means and the BASCOE Reanalysis of Aura-MLS (BRAM2). The results are compared across the four sets of experiments, as a function of latitude and pressure, with a focus on two regions of the stratosphere: the polar lower stratosphere in winter and spring - in order to assess and understand the quality of our ozone hole forecasts - and the tropical middle and upper stratosphere - where noticeably large disagreements are found between the experiments.</p>


2020 ◽  
Author(s):  
Thierry Portafaix ◽  
Kevin Lamy ◽  
Jean-Baptiste Forestier ◽  
Solofo Rakotoniaina ◽  
Vincent Amélie

<p>Radiation (UV) is one of the main components of solar radiation transmitted by the Earth's atmosphere. Exposure to UV radiation can have both positive and negative effects on the biosphere and humans in particular. Overexposure significantly increases the risk of skin cancer and eye problems.</p><p>Ozone, cloud cover and zenithal solar angle are the main parameters affecting UV radiation levels at the surface. Stratospheric ozone in particular strongly absorbs UV radiation. A dense cloud cover absorbs UV radiation, while a split cloud cover may tend to amplify it.</p><p>Although the stratospheric ozone layer is showing signs of recovery from reduced ozone-depleting substances. The impact of greenhouse gases on the climate is still in increase and global climate models anticipate an acceleration in Brewer-Dobson Circulation, which would lead to lower ozone levels in the tropics. Butler et al. (2016) estimate a decrease in stratospheric ozone in the tropics of 5 to 10 DU for all climate scenarios. Some recent projections (Lamy et al., 2019) predict a 2-3% increase in UVR in the southern tropical band, a region where UV levels are already extreme.</p><p>The purpose of the UV-Indien network is to :</p><p>- Monitor UV levels at different sites in the Western Indian Ocean (WIO)</p><p>- Describe the annual and inter-annual variability of UV radiation in the WIO</p><p>- Perform regional climate projections of UV radiations, validated by quality ground measurements.</p><p>UV-Indien is split into three phases. The first phase began in 2016, with the deployment of the first measurement sites (Reunion Island, Madagascar, Seychelles, Rodrigues). These sites are equipped with a broadband radiometer measuring the UVI and a camera estimating the coverage and sometimes a spectrometer for the measurement of total ozone. The second phase from 2019, sees the extension of this network to 4 other sites (Juan de Nova, Diego Suarez, Fort Dauphin and Grande Comoros). The data validation phase began in 2019 (comparative study with satellite data) and will also propose the study of the variability of UV radiation on different sites. Finally, climate projections will be made from 2020 onwards and will use data from the network to validate the results.</p><p>The aim of this communication is to describe the entire network and its objectives. The first results, as well as the first climatologies will also be discussed.</p>


2009 ◽  
Vol 22 (2) ◽  
pp. 429-445 ◽  
Author(s):  
Seok-Woo Son ◽  
Lorenzo M. Polvani ◽  
Darryn W. Waugh ◽  
Thomas Birner ◽  
Hideharu Akiyoshi ◽  
...  

Abstract The evolution of the tropopause in the past, present, and future climate is examined by analyzing a set of long-term integrations with stratosphere-resolving chemistry climate models (CCMs). These CCMs have high vertical resolution near the tropopause, a model top located in the mesosphere or above, and, most important, fully interactive stratospheric chemistry. Using such CCM integrations, it is found that the tropopause pressure (height) will continue to decrease (increase) in the future, but with a trend weaker than that in the recent past. The reduction in the future tropopause trend is shown to be directly associated with stratospheric ozone recovery. A significant ozone recovery occurs in the Southern Hemisphere lower stratosphere of the CCMs, and this leads to a relative warming there that reduces the tropopause trend in the twenty-first century. The future tropopause trends predicted by the CCMs are considerably smaller than those predicted by the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, especially in the southern high latitudes. This difference persists even when the CCMs are compared with the subset of the AR4 model integrations for which stratospheric ozone recovery was prescribed. These results suggest that a realistic representation of the stratospheric processes might be important for a reliable estimate of tropopause trends. The implications of these finding for the Southern Hemisphere climate change are also discussed.


2014 ◽  
Vol 27 (3) ◽  
pp. 1100-1120 ◽  
Author(s):  
David H. Rind ◽  
Judith L. Lean ◽  
Jeffrey Jonas

Abstract Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.4°C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model’s depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.


2016 ◽  
Vol 9 (9) ◽  
pp. 3413-3425 ◽  
Author(s):  
Edwin P. Gerber ◽  
Elisa Manzini

Abstract. Diagnostics of atmospheric momentum and energy transport are needed to investigate the origin of circulation biases in climate models and to understand the atmospheric response to natural and anthropogenic forcing. Model biases in atmospheric dynamics are one of the factors that increase uncertainty in projections of regional climate, precipitation and extreme events. Here we define requirements for diagnosing the atmospheric circulation and variability across temporal scales and for evaluating the transport of mass, momentum and energy by dynamical processes in the context of the Coupled Model Intercomparison Project Phase 6 (CMIP6). These diagnostics target the assessments of both resolved and parameterized dynamical processes in climate models, a novelty for CMIP, and are particularly vital for assessing the impact of the stratosphere on surface climate change.


2016 ◽  
Author(s):  
A. Maycock ◽  
K. Matthes ◽  
S. Tegtmeier ◽  
R. Thiéblemont ◽  
L. Hood

Abstract. The impact of changes in incoming solar ultraviolet irradiance on stratospheric ozone forms an important part of the climate response to solar variability. To realistically simulate the climate response to solar variability using climate models, a minimum requirement is that they should include a solar cycle ozone component that has a realistic amplitude and structure, and which varies with season. For climate models that do not include interactive ozone chemistry, this component must be derived from observations and/or chemistry–climate model simulations and included in an externally prescribed ozone database that also includes the effects of all major external forcings. Part 1 of this two part study presents the solar-ozone responses in a number of updated satellite datasets for the period 1984–2004, including the Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 and version 7.0 data, and the Solar Backscatter Ultraviolet Instrument (SBUV) version 8.0 and version 8.6 data. A number of combined datasets, which have extended SAGE II using more recent satellite measurements, are also analysed for the period 1984–2011. It is shown that SAGE II derived solar-ozone signals are sensitive to the independent temperature measurements used to convert ozone number density to mixing ratio units. A change in these temperature measurements in the recent SAGE II v7.0 data leads to substantial differences in the mixing ratio solar-ozone response compared to the previous v6.2, particularly in the tropical upper stratosphere. We also show that alternate satellite ozone datasets have issues (e.g., sparse spatial and temporal sampling, low vertical resolution, and shortness of measurement record), and that the methods of accounting for instrument offsets and drifts in merged satellite datasets can have a substantial impact on the solar cycle signal in ozone. For example, the magnitude of the solar-ozone response varies by around a factor of two across different versions of the SBUV VN8.6 record, which appears to be due to the methods used to combine the separate SBUV timeseries. These factors make it difficult to extract more than an annual-mean solar-ozone response from the available satellite observations. It is therefore unlikely that satellite ozone measurements alone can be applied to estimate the necessary solar cycle ozone component of the prescribed ozone database for future coupled model intercomparison projects (e.g., CMIP6).


Sign in / Sign up

Export Citation Format

Share Document