Understanding monsoon controls on the energy- and mass-balance of glaciers in High Mountain Asia

Author(s):  
Stefan Fugger ◽  
Evan Miles ◽  
Michael McCarthy ◽  
Catriona Fyffe ◽  
Marin Kneib ◽  
...  

<p>The Indian Summer Monsoon (ISM) shapes the melt and accumulation patterns of glaciers in large parts of High Mountain Asia (HMA) in complex ways due to the interaction of persistent cloud-cover, large temperature amplitudes, high atmospheric water content and high precipitation rates. While the ISM dominates in the southern and eastern regions, it progressively loses influence westward towards the Karakoram, where the influence of westerlies is predominant. Previous applications of energy- and mass-balance models for glaciers in HMA have been limited to single study sites (in Khumbu, Langtang and Parlung) and a few attempted to link model results to large-scale weather patterns. While these studies have helped to understand the energy- and mass-balance of glaciers in HMA under specific local climates, a regional perspective is still missing. In this study, we use a full energy- and mass-balance model together  with eight on-glacier AWS datasets around HMA to investigate how ISM conditions influence glacier-surface energy and mass balance. In particular, we look at how debris-covered and debris-free glaciers respond differently to the ISM, validating our results against independent in-situ measurements. This work is fundamental to the development of parameterizations of glacier melt for long-term hydrological studies and to the understanding of the present and future HMA cryosphere and water budget evolution.</p>

2016 ◽  
Author(s):  
Liyun Zhao ◽  
Yi Yang ◽  
Doying Ji ◽  
John C. Moore

Abstract. Geoengineering by stratospheric sulfate aerosol injection may help preserve mountain glaciers by reducing summer temperatures. We examine this hypothesis for the glaciers in High Mountain Asia using a glacier mass balance model driven by climate simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The G3 and G4 schemes specify use of stratospheric sulphate aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario for the 50 years between 2020 and 2069, and for a further 20 years after termination of geoengineering. We estimate and compare glaciers volume loss for every glacier in the region using a model based on glacier surface mass balance parameterization under climate projections from 3 Earth System Models under G3, 5 under G4 and 6 under RCP4.5 and RCP8.5. G3 keeps the summer mean temperature from increasing in the geoengineering period, but termination of geoengineering leads to sudden temperature rise of about 1.7 ºC and corresponding increase in glacier retreat. Glacier volume in inner Tibet and eastern Himalaya is least affected by greenhouse gas forcing, and also benefits the most from geoengineering. The ensemble mean projections suggest that glacier shrinkage over the period 2010–2069 are equivalent to sea-level rises of 8.4 mm (G3), 10.7 mm (G4), 14.7 mm (RCP 4.5) and 16.8 mm (RCP8.5). After the termination of geoengineering, annual mean volume loss rate for all the glaciers under G3 increases from 0.39 % a−1 to 0.90 % a−1, which are higher than the 0.70 % a−1 under RCP8.5 at that time. While sulphate 30 aerosol injection geoengineering may slow glacier loss in the region, it cannot prevent about a third of existing glacier coverage disappearing by 2069.


2021 ◽  
Author(s):  
Hamed Khorasani ◽  
Zhenduo Zhu

<p>Phosphorus (P) is the key and limiting nutrient in the eutrophication of freshwater resources. Modeling P retention in lakes using steady-state mass balance models (i.e. Vollenweider-type models) provides insights into the lake P management and a simple method for large-scale assessments of P in lakes. One of the basic problems in the mass balance modeling of P in lakes is the removal of P from the lake water column by settling. A fraction of the incoming P into the lake from the watershed is associated with fast-settling particles (e.g. sediment particles) that result in the removal of that fraction of P quickly at the lake entrance. However, existing models considering a constant fraction of fast-settling TP for all lakes are shown to result in overestimation of the retention of P in lakes with short hydraulic residence time. In this study, we combine a hypothesis of the fast- and slow-settling P fractions into the steady-state mass balance models of P retention in lakes. We use a large database of lakes to calibrate the model and evaluate the hypothesis. The results of this work can be used for the improvement of the prediction power of P retention models in lakes and help to better understand the processes of P cycling in lakes.</p>


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2021 ◽  
Author(s):  
Lilian Schuster ◽  
David Rounce ◽  
Fabien Maussion

<p>A recent large model intercomparison study (GlacierMIP) showed that differences between the glacier models is a dominant source of uncertainty for future glacier change projections, in particular in the first half of the century.  Each glacier model has their own unique set of process representations and climate forcing methodology, which makes it impossible to determine the model components that contribute most to the projection uncertainty. This study aims to improve our understanding of the sources of large scale glacier model uncertainty using the Open Global Glacier Model (OGGM), focussing on the surface mass balance (SMB) in a first step. We calibrate and run a set of interchangeable SMB model parameterizations (e.g. monthly vs. daily, constant vs. variable lapse rates, albedo, snowpack evolution and refreezing) under controlled boundary conditions. Based on ensemble approaches, we explore the influence of (i) the parameter calibration strategy and (ii) SMB model complexity on regional to global glacier change. These uncertainties are then put in relation to a qualitative selection of other model design choices, such as the forcing climate dataset and ice dynamics model parameters. </p>


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2865
Author(s):  
Puyu Wang ◽  
Zhongqin Li ◽  
Christoph Schneider ◽  
Hongliang Li ◽  
Alexandra Hamm ◽  
...  

In this study, energy and mass balance is quantified using an energy balance model to represent the glacier melt of Urumqi Glacier No. 1, Chinese Tian Shan. Based on data from an Automatic Weather Station (4025 m a.s.l) and the mass balance field survey data nearby on the East Branch of the glacier, the “COupled Snowpack and Ice surface energy and Mass balance model” (COSIMA) was used to derive energy and mass balance simulations during the ablation season of 2018. Results show that the modeled cumulative mass balance (−0.67 ± 0.03 m w.e.) agrees well with the in-situ measurements (−0.64 ± 0.16 m w.e.) (r2 = 0.96) with the relative difference within 5% during the study period. The correlation coefficient between modeled and observed surface temperatures is 0.88 for daily means. The main source of melt energy at the glacier surface is net shortwave radiation (84%) and sensible heat flux (16%). The energy expenditures are from net longwave radiation (55%), heat flux for snow/ice melting (32%), latent heat flux of sublimation and evaporation (7%), and subsurface heat flux (6%). The sensitivity testing of mass balance shows that mass balance is more sensitive to temperature increase and precipitation decrease than temperature decrease and precipitation increase.


2020 ◽  
Vol 66 (256) ◽  
pp. 175-187 ◽  
Author(s):  
David R. Rounce ◽  
Tushar Khurana ◽  
Margaret B. Short ◽  
Regine Hock ◽  
David E. Shean ◽  
...  

AbstractThe response of glaciers to climate change has major implications for sea-level change and water resources around the globe. Large-scale glacier evolution models are used to project glacier runoff and mass loss, but are constrained by limited observations, which result in models being over-parameterized. Recent systematic geodetic mass-balance observations provide an opportunity to improve the calibration of glacier evolution models. In this study, we develop a calibration scheme for a glacier evolution model using a Bayesian inverse model and geodetic mass-balance observations, which enable us to quantify model parameter uncertainty. The Bayesian model is applied to each glacier in High Mountain Asia using Markov chain Monte Carlo methods. After 10,000 steps, the chains generate a sufficient number of independent samples to estimate the properties of the model parameters from the joint posterior distribution. Their spatial distribution shows a clear orographic effect indicating the resolution of climate data is too coarse to resolve temperature and precipitation at high altitudes. Given the glacier evolution model is over-parameterized, particular attention is given to identifiability and the need for future work to integrate additional observations in order to better constrain the plausible sets of model parameters.


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 119-129 ◽  
Author(s):  
Kathrin Naegeli ◽  
Matthias Huss

ABSTRACT Albedo is an important parameter in the energy balance of bare-ice surfaces and modulates glacier melt rates. The prolongation of the ablation period enforces the albedo feedback and highlights the need for profound knowledge on impacts of bare-ice albedo on glacier mass balance. In this study, we assess the mass balance sensitivity of 12 Swiss glaciers with abundant long-term in-situ data on changes in bare-ice albedo. We use pixel-based bare-ice albedo derived from Landsat 8. A distributed mass-balance model is applied to the period 1997–2016 and experiments are performed to assess the impact of albedo changes on glacier mass balance. Our results indicate that glacier-wide mass-balance sensitivities to changes in bare-ice albedo correlate strongly with mean annual mass balances (r 2 = 0.81). Large alpine glaciers react more sensitively to bare-ice albedo changes due to their ablation areas being situated at lower elevations. We find average sensitivities of glacier-wide mass balance of −0.14 m w.e. a−1 per 0.1 albedo decrease. Although this value is considerably smaller than sensitivity to air temperature change, we stress the importance of the enhanced albedo feedback that will be amplified due to atmospheric warming and a suspected darkening of glacier surface in the near future.


2016 ◽  
Vol 1 (1) ◽  
pp. 39
Author(s):  
Fatmawati Fatmawati ◽  
K Soewardi ◽  
T Kusumastanto ◽  
L Adrianto

The purpose of this study was to estimate the carrying capacity of coastal waters of the pond effluent. The data required for analysis of mass balance models of carrying capacity is based on the total ammonia-nitrogen (NH3-N) concentration in coastal waters. Estimation of carrying capacity with the concept mass balance model using the formula Tchobanoglous (1990) and Predalumpaburt (1996) in Tookwinas (1998) which has been modified by including the formula Widigdo and Pariwono (2001). Carrying capacity of coastal waters of Sebamban Baru Village, Tanah Bumbu Regency maximum pond area calculation may be developed for aquaculture area of 412,583 hectares, this shows that the concentration of ammonia released by the pond has not been an impact on the quality of coastal waters because the existing pond area is new opened an area of 368.542 ha has not exceeded the carrying capacity of the mass balance.


2019 ◽  
Author(s):  
Leif S. Anderson ◽  
Robert S. Anderson ◽  
Pascal Buri ◽  
William H. Armstrong

Abstract. The mass balance of many Alaskan glaciers is perturbed by debris cover. Yet the effect of debris on glacier response to climate change in Alaska has largely been overlooked. In three companion papers we assess the role of debris, ice dynamics, and surface processes in thinning Kennicott Glacier. In Part A, we report in situ measurements from the glacier surface. In Part B, we develop a method to delineate ice cliffs using high-resolution imagery and produce distributed mass balance estimates. In Part C we explore feedbacks that contribute to glacier thinning. Here in Part A, we describe data collected in the summer of 2011. We measured debris thickness (109 locations), sub-debris melt (74), and ice cliff backwasting (60) data from the debris-covered tongue. We also measured air-temperature (3 locations) and internal-debris temperature (10). The mean debris thermal conductivity was 1.06 W (m C)−1, increasing non-linearly with debris thickness. Mean debris thicknesses increase toward the terminus and margin where surface velocities are low. Despite the relatively high air temperatures above thick debris, the melt-insulating effect of debris dominates. Sub-debris melt rates ranged from 6.5 cm d−1 where debris is thin to 1.25 cm d−1 where debris is thick near the terminus. Ice cliff backwasting rates varied from 3 to 14 cm d−1 with a mean of 7.1 cm d−1 and tended to increase as elevation declined and debris thickness increased. Ice cliff backwasting rates are similar to those measured on debris-covered glaciers in High Mountain Asia and the Alps.


2020 ◽  
Vol 66 (260) ◽  
pp. 927-937
Author(s):  
Mingyang Lv ◽  
Duncan J. Quincey ◽  
Huadong Guo ◽  
Owen King ◽  
Guang Liu ◽  
...  

AbstractGlaciers in the eastern Pamir have reportedly been gaining mass during recent decades, even though glaciers in most other regions in High Mountain Asia have been in recession. Questions still remain about whether the trend is strengthening or weakening, and how far the positive balances extend into the eastern Pamir. To address these gaps, we use three different digital elevation models to reconstruct glacier surface elevation changes over two periods (2000–09 and 2000–15/16). We characterize the eastern Pamir as a zone of transition from positive to negative mass balance with the boundary lying at the northern end of Kongur Tagh, and find that glaciers situated at higher elevations are those with the most positive balances. Most (67% of 55) glaciers displayed a net mass gain since the 21st century. This led to an increasing regional geodetic glacier mass balance from −0.06 ± 0.16 m w.e. a−1 in 2000–09 to 0.06 ± 0.04 m w.e. a−1 in 2000–15/16. Surge-type glaciers, which are prevalent in the eastern Pamir, showed fluctuations in mass balance on an individual scale during and after surges, but no statistical difference compared to non-surge-type glaciers when aggregated across the region.


Sign in / Sign up

Export Citation Format

Share Document