Process-based hydrological modeling: accounting for subsurface heterogeneity by integrating pedology, geophysics and soil hydrology

Author(s):  
Edoardo Martini ◽  
Ute Wollschläger ◽  
Marco Bittelli ◽  
Fausto Tomei ◽  
Ulrike Werban ◽  
...  

<p>As most hydrological processes are highly nonlinear and controlled by time-varying boundary conditions, numerical models are required for their comprehensive representation. However, one of the major difficulties in vadose zone processes modeling is due to the fact that soils are heterogeneous at all spatial scales. The identification and accurate representation of such heterogeneity can be crucial for quantifying the subsurface hydrological states and water fluxes but it is still a challenge in soil hydrology.</p><p>We present an integrated approach for process-based modeling of the vadose zone for a typical hillslope. The approach builds on the integration of classical soil mapping, on accurate monitoring of soil water content as well as on geophysical measurements for characterizing the subsurface heterogeneity. It finally integrates the gathered information into a physical model for simulating the vadose-zone processes with high spatial and temporal resolution.</p><p>Starting with a simple soil representation, we present the modeling results for different scenarios of increasing complexity with focus on the discretization and corresponding hydrological parameterization of the soil structures in three dimensions. We highlight and discuss the key challenges that need to be addressed when continuous information about the subsurface heterogeneity is to be mapped in the field and represented in a numerical model.</p><p>We argue that linking state-of-the-art experimental methods to advanced numerical tools, and bridging the gap between different disciplines such as pedology, hydrology and geophysics can be the key for improving our ability to measure, predict and better understand the vadose-zone processes. This will provide important knowledge needed for transferring this approach to larger scales where the accurate quantification of the soil water fluxes is required for a more efficient water management in the context of sustainable food production and climate change.</p>

2021 ◽  
Author(s):  
Vesna Zupanc ◽  
Matjaž Glavan ◽  
Miha Curk ◽  
Urša Pečan ◽  
Michael Stockinger ◽  
...  

<p>Environmental tracers, present in the environment and provided by nature, provide integrative information about both water flow and transport. For studying water flow and solute transport, the hydrogen and oxygen isotopes are of special interest, as their ratios provide a tracer signal with every precipitation event and are seasonally distributed. In order to follow the seasonal distribution of stable isotopes in the soil water and use this information for identifying hydrological processes and hydraulic properties, soil was sampled three times in three profiles, two on Krško polje aquifer in SE Slovenia and one on Ljubljansko polje in central Slovenia. Isotope composition of soil water was measured with the water-vapor-equilibration method. Based on the isotope composition of soil water integrative information about water flow and transport processes with time and depth below ground were assessed. Porewater isotopes were in similar range as precipitation for all three profiles.  Variable isotope ratios in the upper 60 cm for the different sampling times indicated dynamic water fluxes in this upper part of the vadose zone. Results also showed more evaporation at one sampling location, Brege. The information from stable isotopes will be of importance for further analyzing the water fluxes in the vadose zone of the study sties. <br>This research was financed by the ARRS BIAT 20-21-32 and IAEA CRP 1.50.18 Multiple isotope fingerprints to identify sources and transport of agro-contaminants.  </p>


2021 ◽  
Author(s):  
Edoardo Martini ◽  
Ute Wollschläger ◽  
Marco Bittelli ◽  
Fausto Tomei ◽  
Ulrike Werban ◽  
...  

<p>One of the major challenges in soil hydrological modelling is due to the fact that soils are heterogeneous at all spatial scales. The identification and accurate representation of such heterogeneity can be crucial for quantifying the subsurface hydrological states and water fluxes.</p><p>This work presents the results of an integrated approach for process-based soil hydrological modelling for a highly instrumented hillslope site. The approach builds on the integration of classical soil mapping, on accurate monitoring of soil water dynamics as well as on geophysical measurements for characterising subsurface heterogeneity. It finally integrates the gathered information into a physical model for simulating the soil water dynamics with high spatial and temporal resolution.</p><p>At the <em>Schäfertal Hillslope</em> site (Central Germany), the soil monitoring network <em>STH-net</em> provides high-quality data about the soil water dynamics and soil properties at 8 instrumented soil profiles and depths within the unsaturated zone. The soil spatial variability, known from local soil description and sampling, was mapped using time-lapse electromagnetic induction measurements. The geophysical inversion of the data provided depth-resolved information about the subsurface structures in terms of soil-bedrock interface, soil horizons and their spatial continuity along the hillslope transect. Based on this, different versions of the subsurface geometry model were produced and associated to soil hydraulic parameterizations derived from different approaches.</p><p>We show the performance of the physical model <em>CRITERIA-3D</em> in reproducing the soil water dynamics for different subsurface models with increasing complexity. Specifically, we highlight and discuss the key challenges that need to be addressed when continuous information about the subsurface heterogeneity is to be mapped in the field with high resolution and represented in a numerical model with fine discretization in three-dimensions.</p><p>We conclude that linking state-of-the-art experimental methods to advanced numerical tools, and bridging the gap between different disciplines such as pedology, hydrology and geophysics can be the key for improving our ability to measure, predict and better understand the vadose-zone processes. This will provide important knowledge needed for transferring this approach to larger scales where the accurate quantification of the soil water fluxes is required for a more efficient water management in the context of sustainable food production and climate change.</p>


2018 ◽  
Author(s):  
Mousong Wu ◽  
Per-Erik Jansson ◽  
Jingwei Wu ◽  
Xiao Tan ◽  
Kang Wang ◽  
...  

Abstract. Soil freezing/thawing is important for soil hydrology and water management in cold regions. Salt in agricultural field impacts soil freezing/thawing characteristics and therefore soil hydrologic process. In this context, we conducted field experiments on soil water, heat and salt dynamics in two seasonally frozen agricultural regions of northern China to understand influences of salt on cold regions hydrology. We developed CoupModel by implementing impacts of salt on freezing point depression. We employed a Monte-Carlo sampling method to calibrate the new model with field observations. The new model improved soil temperature mean error (ME) by 16 % to 77 % when new freezing point equations were implemented into CoupModel. Nevertheless, we found that parameters related to energy balance and soil freezing characteristics in the new model were sensitive to soil heat and water transport at both sites. However, a systematic model sensitivity and calibration has shown to be able to improve model performance, with mean values of R2 from behavioral simulations for soil temperature at 5 cm depth as high as 0.87 and 0.90, and mean value of R2 for simulated soil water (liquid or total water contents at 5 cm depth) of 0.31 and 0.80 at site Qianguo and site Yonglian, respectively. This study provided a new approach considering influences of salt on soil freezing/thawing in numerical models and highlighted the importance of salt in soil hydrology of seasonally frozen agricultural soils.


Author(s):  
José D. Henao Casas ◽  
Fritz Kalwa ◽  
Marc Walther ◽  
Randolf Rausch

AbstractTo cope with water scarcity in drylands, stormwater is often collected in surface basins and subsequently stored in shallow aquifers via infiltration. These stormwater harvesting systems are often accompanied by high evaporation rates and hygiene problems. This is commonly a consequence of low infiltration rates, which are caused by clogging layers that form on top of the soil profile and the presence of a thick vadose zone. The present study aims to develop a conceptual solution to increase groundwater recharge rates in stormwater harvesting systems. The efficiency of vadose-zone wells and infiltration trenches is tested using analytical equations, numerical models, and sensitivity analyses. Dams built in the channel of ephemeral streams (wadis) are selected as a study case to construct the numerical simulations. The modelling demonstrated that vadose-zone wells and infiltration trenches contribute to effective bypassing of the clogging layer. By implementing these solutions, recharge begins 2250–8100% faster than via infiltration from the bed surface of the wadi reservoir. The sensitivity analysis showed that the recharge rates are especially responsive to well length and trench depth. In terms of recharge quantity, the well had the best performance; it can infiltrate up to 1642% more water than the reservoir, and between 336 and 825% more than the trench. Moreover, the well can yield the highest cumulative recharge per dollar and high recharge rates when there are limitations to the available area. The methods investigated here significantly increased recharge rates, providing practical solutions to enhance aquifer water storage in drylands.


Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 879-896 ◽  
Author(s):  
M. Haller ◽  
F. Janssen ◽  
J. Siddorn ◽  
W. Petersen ◽  
S. Dick

Abstract. For understanding and forecasting of hydrodynamics in coastal regions, numerical models have served as an important tool for many years. In order to assess the model performance, we compared simulations to observational data of water temperature and salinity. Observations were available from FerryBox transects in the southern North Sea and, additionally, from a fixed platform of the MARNET network. More detailed analyses have been made at three different stations, located off the English eastern coast, at the Oyster Ground and in the German Bight. FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface measurements along selected tracks on a regular basis. The results of two operational hydrodynamic models have been evaluated for two different time periods: BSHcmod v4 (January 2009 to April 2012) and FOAM AMM7 NEMO (April 2011 to April 2012). While they adequately simulate temperature, both models underestimate salinity, especially near the coast in the southern North Sea. Statistical errors differ between the two models and between the measured parameters. The root mean square error (RMSE) of water temperatures amounts to 0.72 °C (BSHcmod v4) and 0.44 °C (AMM7), while for salinity the performance of BSHcmod is slightly better (0.68 compared to 1.1). The study results reveal weaknesses in both models, in terms of variability, absolute levels and limited spatial resolution. Simulation of the transition zone between the coasts and the open sea is still a demanding task for operational modelling. Thus, FerryBox data, combined with other observations with differing temporal and spatial scales, can serve as an invaluable tool not only for model evaluation, but also for model optimization by assimilation of such high-frequency observations.


2012 ◽  
Vol 5 (1) ◽  
pp. 223-230 ◽  
Author(s):  
S. Saux Picart ◽  
M. Butenschön ◽  
J. D. Shutler

Abstract. Complex numerical models of the Earth's environment, based around 3-D or 4-D time and space domains are routinely used for applications including climate predictions, weather forecasts, fishery management and environmental impact assessments. Quantitatively assessing the ability of these models to accurately reproduce geographical patterns at a range of spatial and temporal scales has always been a difficult problem to address. However, this is crucial if we are to rely on these models for decision making. Satellite data are potentially the only observational dataset able to cover the large spatial domains analysed by many types of geophysical models. Consequently optical wavelength satellite data is beginning to be used to evaluate model hindcast fields of terrestrial and marine environments. However, these satellite data invariably contain regions of occluded or missing data due to clouds, further complicating or impacting on any comparisons with the model. This work builds on a published methodology, that evaluates precipitation forecast using radar observations based on predefined absolute thresholds. It allows model skill to be evaluated at a range of spatial scales and rain intensities. Here we extend the original method to allow its generic application to a range of continuous and discontinuous geophysical data fields, and therefore allowing its use with optical satellite data. This is achieved through two major improvements to the original method: (i) all thresholds are determined based on the statistical distribution of the input data, so no a priori knowledge about the model fields being analysed is required and (ii) occluded data can be analysed without impacting on the metric results. The method can be used to assess a model's ability to simulate geographical patterns over a range of spatial scales. We illustrate how the method provides a compact and concise way of visualising the degree of agreement between spatial features in two datasets. The application of the new method, its handling of bias and occlusion and the advantages of the novel method are demonstrated through the analysis of model fields from a marine ecosystem model.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3126 ◽  
Author(s):  
Yu Jia ◽  
Shasha Li ◽  
Yu Shi

As the automotive paradigm shifts towards electric, limited range remains a key challenge. Increasing the battery size adds weight, which yields diminishing returns in range per kilowatt-hour. Therefore, energy recovery systems, such as regenerative braking and photovoltaic cells, are desirable to recharge the onboard batteries in between hub charge cycles. While some reports of regenerative suspension do exist, they all harvest energy in a parasitic manner, and the predicted power output is extremely low, since the majority of the energy is still dissipated to the environment by the suspension. This paper proposes a fundamental suspension redesign using a magnetically-levitated spring mechanism and aims to increase the recoverable energy significantly by directly coupling an electromagnetic transducer as the main damper. Furthermore, the highly nonlinear magnetic restoring force can also potentially enhance rider comfort. Analytical and numerical models have been constructed. Road roughness data from an Australian road were used to numerically simulate a representative environment response. Simulation suggests that 10’s of kW to >100 kW can theoretically be generated by a medium-sized car travelling on a typical paved road (about 2–3 orders of magnitude higher than literature reports on parasitic regenerative suspension schemes), while still maintaining well below the discomfort threshold for passengers (<0.315 m/s 2 on average).


Sign in / Sign up

Export Citation Format

Share Document