Modelling uniform and preferential flow in bioretention systems

Author(s):  
Asra Asry ◽  
Jérémie Bonneau ◽  
Gersende Fernandes ◽  
Gislain Lipeme Kouyi ◽  
Bernard Chocat ◽  
...  

<p>Bioretention systems are increasingly used worldwide to mitigate the impacts of urban stormwater runoff on the water cycle. The proper management of bioretention systems requires accurate modeling of physical processes occurring within these systems. This study developed and tested a generic and physically-based model called Infiltron-mod. This model makes use of the Darcian approach (assuming Mualem-van Genuchten model for the description of the soil hydraulic properties) and mass conservation. The first version of the model considers evapotranspiration, overflow, exfiltration to surrounding soils, along with the filter hydraulic head and underdrain discharge. The proposed model was tested against field data from a monitored bioretention basin in Melbourne, Australia. We used two rainfall events to calibrate the model and 20 rainfall events for its validation. We achieved quite nice fits of experimental data with median NSE values in the order of 0.7-0.75 for the outflow rates. Despite good performance for outflow rates, we noticed the potential for improvement for the simulation of the height of water in the systems. Such discrepancy is probably the result of preferential flows.</p><p>As a second step, we developed a specific module to implement the dual permeability approach to model preferential flow. Such an approach may simulate the concomitancy of matrix flow in part of the system and rapid preferential infiltration into macropores. The new module Infiltron-mod-pref was implemented and investigated. Prior to its use for field data, we validated the new module against more straightforward water infiltration experiments. Several large ring infiltration tests were performed on a field dedicated to infiltrating stormwater, and the two versions of the proposed model, Infiltron-mod and Infiltron-mod-Pref. We clearly showed the benefit to account for the preferential flow in the model. The next step will be the use of Infiltron-mod_Pref for field data from the monitored bioretention basin in Melbourne.</p><p>The proposed approach then seems a useful first step to assess both performance and impact of bioretention basins for catchment-scale flow regime management and has real potential for application where user-friendly and simple model calibration and deployment are desired.</p>

2020 ◽  
Author(s):  
Laurent Lassabatere ◽  
Anne-Cécile De Giacomoni ◽  
Rafael Angulo-Jaramillo ◽  
Gislain Lipeme Kouyi ◽  
Matteo Martini ◽  
...  

<p>The extension of urban and peri-urban areas and the related artificialization of soils drastically impacts the water cycle as well as biogeochemical cycles. In particular, the sealing of soils with impervious surfaces such as roads increases runoff and decreases concomitant infiltration. At the catchment scale, more significant amounts of stormwater must be collected and managed to prevent from flooding urban areas and mitigate discharge to the environment. Sustainable Urban Drainage Systems (SUDS) were developed to alleviate these problems. These systems allow the restoration of one of the main functions of urban and peri-urban soils, i.e., infiltrating stormwater. They simultaneously reduce the risk of flooding and increase groundwater recharge. Another essential service must be ensured and optimized: the removal of pollutants from infiltrating water by the soil, to avoid the degradation of the quality of the groundwater.</p><p>The INFILTRON project aims to design a methodology for the assessment of infiltration and filtration of pollutants by SUDS. The project is a collaboration of many partners, with expertise in soil physics, urban hydrology, nanoparticle engineering, and modeling, to engineer a specific device for the simultaneous monitoring of water infiltration and pollutant filtration. This infiltration device both infiltrates water and injects nanoparticles (NPs) into the soil. It was sized to account for preferential flow, which is known to have a significant impact on infiltration and pollutant transfer. The engineered NPs were designed to be detectable in the ground using ground-penetrating radar (GPR) and to mimic the transfer of nano-pollutants (emerging pollutants, bacteria, etc.) commonly found in real stormwater. An infiltration-filtration model was developed to interpret the experimental data and to quantify two indicators for the assessment of water infiltration and pollutant filtration. INFILTRON will provide a very interesting toolbox for practitioners and stakeholders for the evaluation of the infiltration and filtration functions of not only SUDS within the framework of stormwater management, but also anthropized soils within the management of urban and peri-urban areas.</p>


Author(s):  
Simone Di Prima ◽  
Thierry Winiarski ◽  
Rafael Angulo-Jaramillo ◽  
Ryan D. Stewart ◽  
Mirko Castellini ◽  
...  

<p>Preferential flow is more the rule than the exception, in particular during water infiltration experiments. In this study, we demonstrate the potential of GPR monitoring to detect preferential flows during water infiltration. We monitored time-lapse ground penetrating radar (GPR) surveys in the vicinity of single-ring infiltration experiments and created a three-dimensional (3D) representation of infiltrated water below the devices. For that purpose, radargrams were constructed from GPR transects conducted over two grids (1 m × 1 m) before and after the infiltration tests. The obtained signal was represented in 3D and a threshold was chosen to part the domain into wetted and non-wetted zones, allowing the determination of the infiltration bulb. That methodology was used to detect the infiltration below the devices and clearly pointed at nonuniform flows in correspondence with the heterogeneous soil structures. The protocol presented in this study represents a practical and valuable tool for detecting preferential flows at the scale of a single ring infiltration experiment.</p>


2016 ◽  
Vol 47 (6) ◽  
pp. 1172-1181 ◽  
Author(s):  
Dedi Liu ◽  
Yao Xu ◽  
Shenglian Guo ◽  
Pan Liu ◽  
David E. Rheinheimer

Preferential flow is significant for its contribution to rapid response to hydrologic inputs at the soil surface and unsaturated zone flow, which is critical for flow generation in rainfall–runoff (RR) models. In combination with the diffuse and source-responsive flow equations, a new model for water infiltration that incorporates preferential flow is proposed in this paper. Its performance in estimating soil moisture at the catchment scale was tested with observed water content data from the Elder sub-basin of the South Fork Eel River, located in northern California, USA. The case study shows that the new model can improve the accuracy of soil water content simulation even at the catchment scale. The impacts of preferential flow on RR simulation were tested by the Modello Idrologico Semi-Distributio in continuo lumped hydrological model for the Elder River basin. Eleven significant floods events, which were defined as having flood peak magnitudes greater than ten times average discharge during the study period, were employed to assess runoff simulation improvement. The accuracy of the runoff simulation incorporating the preferential flow at the catchment scale improved significantly according to the likelihood ratio test.


2021 ◽  
Vol 299 ◽  
pp. 113672
Author(s):  
Chunfeng Chen ◽  
Xin Zou ◽  
Ashutosh Kumar Singh ◽  
Xiai Zhu ◽  
Wanjun Zhang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Laura Ávila-Dávila ◽  
Manuel Soler-Méndez ◽  
Carlos Francisco Bautista-Capetillo ◽  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
...  

Infiltration estimation is made by tests such as concentric cylinders, which are prone to errors, such as the lateral movement under the ring. Several possibilities have been developed over the last decades to compensate these errors, which are based on physical, electronic, and mathematical principles. In this research, two approaches are proposed to measure the water infiltration rate in a silty loam soil by means of the mass values of a lysimeter weighing under rainfall conditions and different moisture contents. Based on the fact that with the lysimeter it is possible to determine acting soil flows very precisely, then with the help of mass conservation and assuming a downward vertical movement, 12 rain events were analyzed. In addition, it was possible to monitor the behavior of soil moisture and to establish the content at field capacity from the values of the weighing lysimeter, from which both approach are based. The infiltration rate of these events showed a variable rate at the beginning of the rainfall until reaching a maximum, to descend to a stable or basic rate. This basic infiltration rate was 1.49 ± 0.36 mm/h, and this is because soils with fine textures have reported low infiltration capacity. Four empirical or semi-empirical models of infiltration were calibrated with the values obtained with our approaches, showing a better fit with the Horton’s model.


2017 ◽  
Vol 21 (7) ◽  
pp. 3727-3748 ◽  
Author(s):  
Lisa Angermann ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Erwin Zehe ◽  
...  

Abstract. The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al.(2017).


2017 ◽  
Vol 21 (11) ◽  
pp. 5503-5515 ◽  
Author(s):  
Hiroyuki Hirashima ◽  
Francesco Avanzi ◽  
Satoru Yamaguchi

Abstract. The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.


2008 ◽  
Vol 16 (3) ◽  
pp. 267 ◽  
Author(s):  
K. RASA ◽  
R. HORN ◽  
M. RÄTY

Water repellency (WR) delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95) at the time of sampling. WR increased as follows: sand (R = 1.8-5.0) < clay (R = 2.4-10.3) < organic (R = 7.9-undefined). At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr.), where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;


2021 ◽  
Author(s):  
John Koestel ◽  
Lorenzo Garbari ◽  
Daniel Iseskog

&lt;p&gt;While the basic processes of water infiltration into soil are well understood, their details are difficult to quantify due to the opaque nature of soil. In this study, we investigated the potential and limitations of X-ray radiography to measure the water front progression in a narrow sample (15 &amp;#215; 15 &amp;#215; 1 cm) filled with dry soil under simulated rainfall of high intensity (53 mm/h). The temporal resolution of the acquired infiltration movies was 133 milliseconds. We evaluated three different kinds of soil samples. i) Bare samples filled with a 1:1 mixture of a sandy loam and peat. ii) The same soil-peat mixture, but cropped with &lt;em&gt;Trifolium incarnatum&lt;/em&gt;, &lt;em&gt;Trifolium repens&lt;/em&gt;, &lt;em&gt;Lathyrus odoratus&lt;/em&gt; and &lt;em&gt;Lupinus regalis&lt;/em&gt;, all of them plants that have been reported to induce water repellency; prior to the experiments, the plants were harvested and only the roots remained in place. iii) Sandy loam soil that had been incubated for four weeks in an outside garden plot. Due to time limitations of the project, the incubation period was in early spring, which meant that plant growth in the samples was negligible. All three sample types were replicated five times, resulting in 15 individual samples. We carried out the infiltration experiments in four-fold replications, from which it follows that we collected 60 individual infiltration movies. After each infiltration round, the samples were placed in a drying room to reset them to a similar initial moisture content. The experiments aimed at testing i) whether the infiltration patterns of the four consecutive infiltration runs conducted on each sample remained identical and ii) to document differences in infiltration patterns between bare, cropped and incubated samples. We found that increasing X-ray scattering with increasing soil water contents made it challenging to evaluate the image data quantitatively. Advantages of our setup are that X-ray captures the complete water content at a specific depth and that sample boxes with irregularly shaped walls can be used to prevent preferential flow along the walls. Preliminary analyses of the data showed that the infiltration fronts in the bare and the incubated samples were less uniform than the ones for the cropped samples. In contrast, the likelihood of observing the same infiltration pattern in all four consecutive infiltration runs was larger for the bare and the incubated samples. The latter fact may have been caused by the interaction with root exudates in the cropped samples that may have been redistributed or mineralized during the wetting-drying cycles. We conclude that the here presented setup has large potential to investigate unstable infiltration phenomena into soil after an image correction approach has been developed that removes X-ray scattering artifacts. Alternatively, scattering may be suppressed by using a collimator during image acquisition.&lt;/p&gt;


2009 ◽  
Vol 16 (1) ◽  
pp. 159-168 ◽  
Author(s):  
A. Posadas ◽  
R. Quiroz ◽  
A. Tannús ◽  
S. Crestana ◽  
C. M. Vaz

Abstract. The study of water movement in soils is of fundamental importance in hydrologic science. It is generally accepted that in most soils, water and solutes flow through unsaturated zones via preferential paths or fingers. This paper combines magnetic resonance imaging (MRI) with both fractal and multifractal theory to characterize preferential flow in three dimensions. A cubic double-layer column filled with fine and coarse textured sand was placed into a 500 gauss MRI system. Water infiltration through the column (0.15×0.15×0.15 m3) was recorded in steady state conditions. Twelve sections with a voxel volume of 0.1×0.1×10 mm3 each were obtained and characterized using fractal and multifractal theory. The MRI system provided a detailed description of the preferential flow under steady state conditions and was also useful in understanding the dynamics of the formation of the fingers. The f(α) multifractal spectrum was very sensitive to the variation encountered at each horizontally-oriented slice of the column and provided a suitable characterization of the dynamics of the process identifying four spatial domains. In conclusion, MRI and fractal and multifractal analysis were able to characterize and describe the preferential flow process in soils. Used together, the two methods provide a good alternative to study flow transport phenomena in soils and in porous media.


Sign in / Sign up

Export Citation Format

Share Document