Glacier Clusters identification across Chilean Andes using Topo-Climatic variables

Author(s):  
Alexis Caro ◽  
Fernando Gimeno ◽  
Antoine Rabatel ◽  
Thomas Condom ◽  
Jean Carlos Ruiz

<p>This study presents a glacier clustering for the Chilean Andes (17.6-55.4°S) realized with the Partitioning Around Medoids (PAM) algorithm and using topographic and climatic variables over the 1980-2019 period. We classified ~24,000 glaciers inside thirteen different clusters (C1 to C13). These clusters show specific conditions in terms of annual and monthly amounts of precipitation, temperature, and solar radiation. In the Northern part of Chile, the Dry Andes (17-36°S) gather five clusters (C1-C5) that display mean annual precipitation and temperature differences up to 400 mm/yr and 8°C, respectively, and a mean elevation difference reaching 1800 m between glaciers in C1 and C5 clusters. In the Wet Andes (36-56°S) the highest differences were observed at the Southern Patagonia Icefield (50°S), with mean annual values for precipitation above 3700 mm/yr (C12, maritime conditions) and below 1000 mm/yr in the east of Southern Patagonia Icefield (C10), and with a difference in mean annual temperature near 4°C and mean elevation contrast of 500 m.</p><p>This classification confirms that Chilean glaciers cannot be grouped only latitudinally as it has been commonly considered, hence contributing to a better understanding of recent glacier volume changes at regional and watershed scales. An example of this was observed in the Maipo watershed (33°S), where the Echaurren Norte glacier is located, which is the reference glacier for Chile and WGMS because it has the oldest time series of mass balance monitoring in the Andes, followed by the Piloto Este glacier, since the 70's. Indeed, we identified that Echaurren Norte glacier only has similarities with 5% of the glacierized surface area of the Maipo watershed. Echaurren Norte glacier is within a glacier cluster that presents warmer and wetter climate conditions (3.1°C, 574 mm/yr) than the average of the watershed, a cluster that contains also 68% of the glacierized surface composed of rock glaciers.</p>

Geology ◽  
2019 ◽  
Vol 47 (9) ◽  
pp. 829-832 ◽  
Author(s):  
Hugues-Alexandre Blain ◽  
Ana Fagoaga ◽  
Francisco Javier Ruiz-Sánchez ◽  
Josep Francesc Bisbal-Chinesta ◽  
Massimo Delfino

Abstract Early Pleistocene terrestrial climate conditions in the Mediterranean region, especially between 1.3 and 1.7 Ma, are poorly understood. Here, the amphibian and reptile fossil record from 24 fissures (Cava Pirro) of the Pirro Nord karstic complex (southern Italy) is used to infer quantitative paleoclimatic and paleoenvironmental reconstructions. These numerical data indicate that the mean annual temperature may have been somewhat lower (–1.6 to –3.6 °C compared to modern temperatures) than that of today, and the mean annual precipitation slightly higher (+90 to +240 mm) than modern values. Seasonality was more pronounced, with cooler summers (–0.4 to –2.0 °C) and much colder winters (–1.2 to –6.0 °C). Rainfall distribution patterns during the year show more precipitation during the winter (+14 to +43 mm), with quantities of summer rainfall (–1.7 to +6.6 mm) being similar to modern values. The associated landscape comprised an open dry environment with scattered patches of woodland, locally along water courses or around swamps. This ecological scenario fits with early Pleistocene cold conditions, where the first occurrence of some eastern emigrants suggests a scenario of trans-Adriatic dispersal, as may have also occurred for the earliest European hominins.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S693-S694
Author(s):  
Raghesh Varot Kangath ◽  
Rajasree Pai Ramachandra ◽  
Buddhika Madurapperuma ◽  
Luke Scaroni

Abstract Background Climate change has increased the risk of tick borne infections. The life cycle and prevalence of deer ticks are strongly influenced by temperature. Warmer temperatures associated with climate change are projected to increase the range of suitable tick habitats driving the spread of Lyme disease (LD). Short winters could also increase tick activity increasing the risk of exposure. This study examines the relationship between LD incidence and temperature-precipitation and their anomalies in CA counties. Methods Trends and relationships of Lyme Disease (LD) cases and climatic factors were analyzed among the California counties from 2000 to 2019. Lyme disease tabulate data and climatic data were obtained from Centers for Disease Control, and NOAA, and Climate Data Guide respectively. Canonical correspondence analysis (CCA) was performed using variables: (i) LD cases, (ii) precipitation & anomaly, and temperature & anomaly. The CCA ordination explained the variability between LD cases and climatic variables. Biplots were used to visualize the associations between LD cases and climatic anomalies. Results We compared the countywide LD cases in relation to climatic factors in California from 2000 to 2019. A total of 96 cases in 2000, 117 cases in 2009, and 144 cases in 2019 were reported in the 55 counties of California. Santa Clara reported the highest LD cases in 2003 (23 cases; 16%), followed by Los Angeles in 2013 (20 cases; 18%) and Santa Cruz in 2017 (19 cases; 13%). CCA ordination showed distinguishable clustering patterns between southern California counties (Santa Clara, Santa Cruz, Alameda, and San Diego) and northern coast and Klamath mountains range (Humboldt, Trinity, Shasta, and Siskiyou) regions (Fig. 1). Moderate mean annual temperature (56.5 °F - 62.5 °F) and temperature anomaly (3.8 °F - 5.5 °F) were the most important variable predictor for high LD outbreak. The CCA ordination shows the relationships between Lyme Disease and climatic variables for the 55 Counties of California. The bottom right circle represents Lyme cases positively correlated with temperature anomaly (3.8 °F - 5.5 °F) and moderate annual mean temperature (56.5 °F - 62.5 °F). The upper left circle represents Lyme cases negatively correlated with mean annual precipitation. Conclusion Moderate temperature with low moist spell anomalies in the south neighboring CA counties showed a positive influence on LD outbreak. The climatic conditions in those areas suitable for Oak trees and masting acorn resulting in the establishment of tick and host (deer) populations. We recommend robust surveillance and lab testing for patients with a history of tick bites in these regions. Disclosures All Authors: No reported disclosures


2021 ◽  
Author(s):  
Yuxi Zhong ◽  
Chuanwu Chen ◽  
Yanping Wang

Abstract China is a country with one of the most species rich reptile faunas in the world. However, nearly a quarter of Chinese lizard species assessed by the China Biodiversity Red List are threatened. Nevertheless, to date, no study has explicitly examined the pattern and processes of extinction and threat in Chinese lizards. In this study, we conducted the first comparative phylogenetic analysis of extinction risk in Chinese lizards. We addressed the following three questions: 1) What is the pattern of extinction and threat in Chinese lizards? 2) Which species traits and extrinsic factors are related to their extinction risk? 3) How can we protect Chinese lizards based on our results? We collected data on ten species traits (body size, clutch size, geographic range size, activity time, reproductive mode, habitat specialization, habitat use, leg development, maximum elevation, and elevation range) and seven extrinsic factors (mean annual precipitation, mean annual temperature, mean annual solar insolation, normalized difference vegetation index (NDVI), human footprint, human population density, and human exploitation). After phylogenetic correction, these variables were used separately and in combination to assess their associations with extinction risk. We found that Chinese lizards with small geographic range, large body size, high habitat specialization, and living in high precipitation areas were vulnerable to extinction. Conservation priority should thus be given to species with the above extinction-prone traits so as to effectively protect Chinese lizards. Preventing future habitat destruction should also be a primary focus of management efforts because species with small range size and high habitat specialization are particularly vulnerable to habitat loss.


1975 ◽  
Vol 14 (70) ◽  
pp. 155-170 ◽  
Author(s):  
Cesar N. Caviedes ◽  
Roland Paskoff

The extension of the Quaternary glaciations has been studied in the semi-arid Andes of north-central Chile, where the glacial modelling is striking. In the Elqui valley (lat. 30°S.), two glacial advances were identified reaching down to 3 100 m (Laguna glaciation) and 2 500 m (Tapado glaciation). In the Aconcagua valley (lat. 33°S.), moraines from three major glacial advances were found, at 2 800 m (Portillo glaciation), 1 600 m (Guardia Vieja glaciation) and 1 300 m (Salto del Soldado glaciation).The Quaternary glaciations were linked with a decrease of temperature, but more significantly with a marked increase of precipitation probably related to an equatorward shift of 5–6 degrees of the austral polar front. The results obtained in the semi-arid Chilean Andes are correlated with those recently reported from other sectors of the southern Andes.


2015 ◽  
Vol 54 (7) ◽  
pp. 1393-1412 ◽  
Author(s):  
Dale T. Andersen ◽  
Christopher P. McKay ◽  
Victor Lagun

AbstractIn November 2008 an automated meteorological station was established at Lake Untersee in East Antarctica, producing a 5-yr data record of meteorological conditions at the lake. This dataset includes five austral summer seasons composed of December, January, and February (DJF). The average solar flux at Lake Untersee for the four years with complete solar flux data is 99.2 ± 0.6 W m−2. The mean annual temperature at Lake Untersee was determined to be −10.6° ± 0.6°C. The annual degree-days above freezing for the five years were 9.7, 37.7, 22.4, 7.0, and 48.8, respectively, with summer (DJF) accounting for virtually all of this. For these five summers the average DJF temperatures were −3.5°, −1.9°, −2.2°, −2.6°, and −2.5°C. The maximum (minimum) temperatures were +5.3°, +7.6°, +5.7°, +4.4°, and +9.0°C (−13.8°, −12.8°, −12.9°, −13.5°, and −12.1°C). The average of the wind speed recorded was 5.4 m s−1, the maximum was 35.7 m s−1, and the average daily maximum was 15 m s−1. The wind speed was higher in the winter, averaging 6.4 m s−1. Summer winds averaged 4.7 m s−1. The dominant wind direction for strong winds is from the south for all seasons, with a secondary source of strong winds in the summer from the east-northeast. Relative humidity averages 37%; however, high values will occur with an average period of ~10 days, providing a strong indicator of the quasi-periodic passage of storms across the site. Low summer temperatures and high wind speeds create conditions at the surface of the lake ice resulting in sublimation rather than melting as the main mass-loss process.


2021 ◽  
Author(s):  
G. de Pasquale ◽  
R. Valois ◽  
S. MacDonell ◽  
N. Schaefer
Keyword(s):  

2021 ◽  
Author(s):  
Mengjiao Sun ◽  
Enqing Hou ◽  
Jiasen Wu ◽  
Jianqin Huang ◽  
Xingzhao Huang

Abstract Background: Soil nutrients play critical roles in regulating and improving the sustainable development of economic forests. Consequently, an elucidation of the spatial patterns and drivers of soil nutrients in these forests is fundamental to their management. For this study, we collected 314 composite soils at a 0-30 cm depth from a typical hickory plantation in Lin 'an, Zhejiang Province, China. We determined the concentrations of macronutrients (i.e., soil organic carbon, hydrolyzed nitrogen, available phosphorus, and available potassium) and micronutrients (i.e., iron, manganese, zinc, and copper.) of the soils. We employed random forest analysis to quantify the relative importance of soil-forming factors to predict the soil nutrient concentrations, which could then be extrapolated to the entire hickory region. Results: Random forest models explained 61%–88% of the variations in soil nutrient concentrations. The mean annual temperature and mean annual precipitation were the most important predictor of soil macronutrient and micronutrient concentrations. Moreover, parent material was another key predictor of soil available phosphorus and micronutrient concentrations. Mapping results demonstrated the importance of climate in controlling the spatial distribution of soil nutrient concentrations at finer scales, as well as the effect of parent material, topography, stand structure, and management measures of hickory plantations. Conclusions: Our study highlights the biotic factors, abiotic factors, and management factors control over soil macronutrient and micronutrient concentrations, which have significant implications for the sustainability of soil nutrients in forest plantations.


2018 ◽  
Vol 15 (12) ◽  
pp. 3703-3716 ◽  
Author(s):  
Alexandre A. Renchon ◽  
Anne Griebel ◽  
Daniel Metzen ◽  
Christopher A. Williams ◽  
Belinda Medlyn ◽  
...  

Abstract. Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterised by a mean annual precipitation of 800 mm and a mean annual temperature of 18 ∘C, hot summers and mild winters, with highly variable precipitation. In the 4-year study, the ecosystem was a sink each year (−225 g C m−2 yr−1 on average, with a standard deviation of 108 g C m−2 yr−1); inter-annual variations were not related to meteorological conditions. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was significantly correlated with remotely sensed enhanced vegetation index (EVI; r2 = 0.46) and with canopy leaf area index (LAI; r2 = 0.29), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric demand and high temperature, and because ecosystem respiration could be enhanced by rising temperatures, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
F. Cervi ◽  
M. M. Nistor

In this study, monthly time series of precipitations and temperatures from 1024 controlled and homogeneous meteorological stations located in the Emilia-Romagna region (northern Italy) are processed in order to assess potential climate changes that occurred during the period 1961–2015. Normal period as baseline between 1961 and 1990 (1990s) and recent period between 1991 and 2015 (2010s) were adopted in this study to analyse the possible effect of climate change on water availability during long-term period. Based on monthly and annual temperature (TT), precipitation (PP), and potential (ET0), the actual evapotranspiration (AET0) and water availability (WA) were computed at high spatial resolution. Between the two analysed periods, during the 2010s, it was found an increase in the maximum mean annual temperature by 1.08°C while the maximum mean annual precipitation saw a slight decrease (from 2222 mm to 2086 mm). The precipitation decrease is more intense in the South and West sectors of area (8%) and mainly depends on negative changes taking place during the winter and the beginning of spring (from December to March). The maximum mean annual ET0 and AET0 reached values of 663 mm and 565 mm during the 1990s, while during the 2010s, the found values were 668 mm and 572 mm, respectively. Because of the decrease in precipitation and increase in the ET0 and AET0, the WA (the proportion of precipitation that is available at the soil surface for subsequent infiltration and runoff processes) shows a reduction (about 10–20%) in the whole region, with exception of the North-East part of the Emilia-Romagna region. The decrease in the mean annual water availability induces severe issues concerning the water resources management across the whole Emilia-Romagna region.


2015 ◽  
Vol 11 (3) ◽  
pp. 2121-2157 ◽  
Author(s):  
G. D. Sottile ◽  
M. E. Echeverria ◽  
M. V. Mancini ◽  
M. M. Bianchi ◽  
M. A. Marcos ◽  
...  

Abstract. The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation system that dominates the dynamics of Southern Hemisphere mid-latitude climate. Little is known about climatic changes in the Southern South America in comparison to the Northern Hemisphere due to the low density of proxy records, and adequate chronology and sampling resolution to address environmental changes of the last 2000 years. Since 2009, new pollen and charcoal records from bog and lakes in northern and southern Patagonia at the east side of the Andes have been published with an adequate calibration of pollen assemblages related to modern vegetation and ecological behaviour. In this work we improve the chronological control of some eastern Andean previously published sequences and integrate pollen and charcoal dataset available east of the Andes to interpret possible environmental and SWW variability at centennial time scales. Through the analysis of modern and past hydric balance dynamics we compare these scenarios with other western Andean SWW sensitive proxy records for the last 2000 years. Due to the distinct precipitation regimes that exist between Northern (40–45° S) and Southern Patagonia (48–52° S) pollen sites locations, shifts on latitudinal and strength of the SWW results in large changes on hydric availability on forest and steppe communities. Therefore, we can interpret fossil pollen dataset as changes on paleohydric balance at every single site by the construction of paleohydric indices and comparison to charcoal records during the last 2000 cal yrs BP. Our composite pollen-based Northern and Southern Patagonia indices can be interpreted as changes in latitudinal variation and intensity of the SWW respectively. Dataset integration suggest poleward SWW between 2000 and 750 cal yrs BP and northward-weaker SWW during the Little Ice Age (750–200 cal yrs BP). These SWW variations are synchronous to Patagonian fire activity major shifts. We found an in phase fire regime (in terms of timing of biomass burning) between northern Patagonia Monte shrubland and Southern Patagonia steppe environments. Conversely, there is an antiphase fire regime between Northern and Southern Patagonia forest and forest-steppe ecotone environments. SWW variability may be associated to ENSO variability especially during the last millennia. For the last 200 cal yrs BP we can concluded that the SWW belt were more intense and poleward than the previous interval. Our composite pollen-based SWW indices show the potential of pollen dataset integration to improve the understanding of paleohydric variability especially for the last 2000 millennial in Patagonia.


Sign in / Sign up

Export Citation Format

Share Document