Comparison of methods for recharge estimation and prediction in karstic aquifers under Mediterranean Climate

Author(s):  
Paul Hepach ◽  
Sandra Banusch ◽  
Lysander Bresinsky ◽  
Mark Somogyvári ◽  
Edoardo Bucchignani ◽  
...  

<p>Karst aquifers provided 9.2 % of the world’s population with fresh water in 2016 (Stevanović, 2019), but due to their dual flow behavior they are highly vulnerable to anthropogenic impacts and shifts in climate. In the near future, 52 out of 356 Mediterranean aquifers will be exposed to more extreme climatic conditions, which will enhance their water stress if the water usage is not adapted to available water resources (Nußbaum, 2020). Therefore, accurate and high resolution numerical - and empirical models are essential to calculate the groundwater recharge and water availability in complex karst aquifers that cover ~ 14 % of the earth’s ice free land (Stevanovic, 2019).</p><p>During the last decades, several empirical equations have been developed to calculate the recharge for Israel´s most important source of freshwater, the Western Mountain Aquifer (WMA). These equations calculate annual groundwater recharge of the entire 1.812 km<sup>2</sup> recharge area based on annual or monthly precipitation data. We analyzed the applicability of several new methods, such as Soil & Water Assessment Tool (SWAT), HydroGeoSphere (HGS) and Hydro- / Pedo- Transfer Functions (HPTF) to estimate groundwater recharge with  a higher resolution as this is essential to calculate proper water fluxes though the vadose zone of karstic aquifers when precipitation is affected by a high variability in space and time.</p><p>The hydrologic balance models,  e.g. SWAT (Neitsch et al., 2009),  calculate the water balance on a daily basis for specified Hydrologic Response Units (HRUs), while generalized HPTFs (Wessolek et al., 2009) use soil-, land cover-  and climate data to calculate  annual percolation rates on a coarse grid, in our case 500 m grid size. The dual continuum model using the code HGS (Brunner et al., 2011) is able to simulated based on Richards’s flow equation down- and upward water fluxes in the unsaturated zone accounting for both, a rapid flow component though the high permeable conduit and a slow flow component through the rock matrix.</p><p>The comparison of these empirical and new methods for groundwater recharge estimation show significant differences for hydrological extreme years, while results are similar during years with precipitation rates near the average value. For example, the empirical equation of Guttman & Zukerman (1995) gives  highest recharge values of all approaches during wet years, while the equation of Abusaada (2011) and the SWAT-model calculates  highest recharge values of all approaches during  dry years. Overall, the mean recharge ranges from 120 to 177 mm/a which equals 25 – 37 % of the average precipitation between 1990 – 2018.</p><p>These recharge rates are calculated based on IMS climate data. However, for recharge values used in water resources management regional climate projections are needed. For Israel a high resolution CORDEX-MENA climate projection (Hochman et al., 2018) is available for RCP4.5, showing an increase in temperature and decrease of precipitation during the winter of 2.5 °C and 40 %, respectively. Based on these climate projections the  SWAT-model estimates, that the average groundwater recharge for 2050 – 2070 will be 16 % lower than the reference period between 1980 – 2000.</p>


2020 ◽  
Author(s):  
Sara Top ◽  
Lola Kotova ◽  
Lesley De Cruz ◽  
Svetlana Aniskevich ◽  
Leonid Bobylev ◽  
...  

Abstract. To allow for climate impact studies on human and natural systems high-resolution climate information is needed. Over some parts of the world plenty of regional climate simulations have been carried out, while in other regions hardly any high-resolution climate information is available. This publication aims at addressing one of these regional gaps by presenting an evaluation study for two regional climate models (RCMs) (REMO and ALARO-0) at a horizontal resolution of 0.22° (25 km) over Central Asia. The output of the ERA-Interim driven RCMs is compared with different observational datasets over the 1980–2017 period. The choice of the observational dataset has an impact on the scores but in general one can conclude that both models reproduce reasonably well the spatial patterns for temperature and precipitation. The evaluation of minimum and maximum temperature demonstrates that both models underestimate the daily temperature range. More detailed studies of the annual cycle over subregions should be carried out to reveal whether this is due to an incorrect simulation in cloud cover, atmospheric circulation or heat and moisture fluxes. In general, the REMO model scores better for temperature whereas the ALARO-0 model prevails for precipitation. This publication demonstrates that the REMO and ALARO-0 RCMs can be used to perform climate projections over Central Asia and that the produced climate data can be applied in impact modelling.



2020 ◽  
Author(s):  
Claudio Gandolfi ◽  
Alessandro Castagna ◽  
Andrea Castelletti ◽  
Matteo Giuliani ◽  
Maria Chiara Lippera ◽  
...  

<p>Water resources planning at the basin scale is the keystone to adaptation of water resources systems to socio-economic and climate changes. Simulation and optimization models can provide a useful support to the planning process. Besides including all significant processes, they need to incorporate the contribution of the relevant stakeholders from the early stages of their development, particularly in areas where multiple concurring uses of water resources occur and where surface water-groundwater interactions are important.  This is the case of the plain of the Lombardy Region, Italy, where an ancient system of irrigation canals has been successfully used for centuries to supply huge amounts of water to a large irrigated area, which is also one of the most industrialized in Europe (Lombardy is one of the “Four Motors for Europe”, a transnational network of highly industrialized regions including Rhône-Alpes, Baden-Württemberg and Catalonia). Indeed, the Lombardy water resources have suffered recurrent crisis in the last years and a huge pressure has been raising on irrigation water use, which is by far the main consumptive use. We illustrate here an integrated approach to the analysis of different strategies of adaptation of irrigation systems to changing conditions, which accounts for the links between water use, crop production, energy consumption and hydrological conditions (as a proxy of the ecosystems quality).  We will consider the case study of the Adda river basin, an 8,000 km<sup>2</sup> basin including lake Como, where the requirements of hydropower production and irrigation supply need to strike a balance with lake tourism, flood protection and environment conservation.</p><p>The approach is based on a combination of simulation models (of upstream sub-basin, lake and downstream sub-basin) and optimization model (of lake regulation policy) that allow assessing the effects of different climate and technological scenarios. The former scenarios were obtained downscaling the regional climate projections provided by the CORDEX project till 2100, while for the latter we focused on measures to increase the efficiency of irrigation systems, that emerged as priority from the discussions with the stakeholders. Specifically, we considered different degrees of reconversion of irrigation methods from surface irrigation to more efficient methods (sprinkler or drip). The effects of the reconversion, under different climate projections, were assessed by running simulations with the IdrAgra spatially distributed agro-hydrological model, which provided the estimated values of crop water use, groundwater recharge, return flows, as well as of crop production and energy consumption.  The comparison of different reconversion intensities was carried out considering indicators for the satisfaction of crop water requirements, the energy consumption, the groundwater recharge, and the river hydrological regime. A number of remarks can be made from the analysis of the results, among which it clearly emerged that under the current trend of increasing temperature already at the mid of the century irrigation deficits and impacts on the river hydrological regime will be intolerable unless the irrigation system efficiency will increase significantly in vast portions of the study area. Finally, a preliminary estimate of the cost of interventions is provided.</p>



2020 ◽  
Author(s):  
Koen De Ridder ◽  
Filip Lefebre ◽  
Eline Vanuytrecht ◽  
Julie Berckmans ◽  
Hendrik Wouters

<p>Biodiversity is increasingly under pressure from climate change, which affects the habitat suitability for species as well as the efficiency of ecosystem services. Management of these issues, for instance through ecosystem restoration or species dispersal measures, is often hindered by a lack of appropriate information about (future) climate conditions.  To address this, an operational Sectoral Information System (SIS) for the Biodiversity sector (SIS Biodiversity) is designed within the Copernicus programme Climate Change Service (C3S). This new SIS provides tailored bio-climatic indicators and applications, and delivers novel evidence regarding impacts of past, present and future climate. As such, it provides support to decision making challenges that are currently facing unmet climate data needs.<br> <br>The new climate service for SIS Biodiversity will be demonstrated, including the outline, workflow and outcomes of the use cases. The service is built upon the Copernicus Data Store platform (CDS; ), and takes into account (1) the barriers in ongoing bio-climate assessments and (2) the user requirements of diverse stakeholders (e.g. researcher institutes, local NGO’s, the International Union for Conservation of Nature and Natural Resources (IUCN),…). These have been collected during workshops and bilateral meetings in 2019. A common barrier is the lack of reliable and high-resolution information about states and dynamics of the soil, sea, ice and air for the past and the future climate. Therefore, the service provides relevant bio-climatic indicators on the basis of a wealth of available variables from the latest ERA5 reanalysis datasets and the CMIP5 global climate projections available in CDS. In order to provide information at high resolution and minimize inconsistencies between observed and modelled variables, different downscaling and bias-correction techniques are applied. A common requirement is a universal and flexible interface to the bio-climatic indicators in an easy-to-use and coherent platform that is applicable for different fauna and flora species of interest. Therefore, different applications have been developed within CDS for generating bio-climate suitability envelopes from the high-resolution indicators and to evaluate climate suitability and impacts for the species under present and future climate. Finally, the service is currently tested and refined on the basis of specific use cases. Special attention is given to their transferability to other global and topical studies, hence maximizing external user uptake throughout existing research and policy networks.</p>



2016 ◽  
Vol 18 (1) ◽  
pp. 119-130 ◽  

<div> <p>The Mediterranean region is predicted to be highly impacted by climate change and the availability of water resources is expected to decrease. This study aims to assess the potential impact of climate change in an aquifer located in Northeastern Greece, for the period 2041-2070. For this, climate data from three Regional Climate Models (RCMs) were bias-corrected using the Cumulative Distribution Function (CDF) method, based on historical data for the period 1981-2000. The bias-corrected data are fed to the SWAT model, in order to calculate monthly groundwater recharge values, which were then inputted to the MODFLOW model to predict future groundwater level distribution. The performance of the CDF correction method was assessed. The results indicate a significant increase in both maximum and minimum temperature and decrease in precipitation. In addition, groundwater recharge was found to decrease and groundwater abstractions to increase, leading to a subsequent decrease in groundwater level.</p> </div> <p>&nbsp;</p>



Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 157
Author(s):  
Giuseppe Pulighe ◽  
Flavio Lupia ◽  
Huajin Chen ◽  
Hailong Yin

The consequences of climate change on food security in arid and semi-arid regions can be serious. Understanding climate change impacts on water balance is critical to assess future crop performance and develop sustainable adaptation strategies. This paper presents a climate change impact study on the water balance components of an agricultural watershed in the Mediterranean region. The restructured version of the Soil and Water Assessment Tool (SWAT+) model was used to simulate the hydrological components in the Sulcis watershed (Sardinia, Italy) for the baseline period and compared to future climate projections at the end of the 21st century. The model was forced using data from two Regional Climate Models under the representative concentration pathways RCP4.5 and RCP8.5 scenarios developed at a high resolution over the European domain. River discharge data were used to calibrate and validate the SWAT+ model for the baseline period, while the future hydrological response was evaluated for the mid-century (2006–2050) and late-century (2051–2098). The model simulations indicated a future increase in temperature, decrease in precipitation, and consequently increase in potential evapotranspiration in both RCP scenarios. Results show that these changes will significantly decrease water yield, surface runoff, groundwater recharge, and baseflow. These results highlight how hydrological components alteration by climate change can benefit from modelling high-resolution future scenarios that are useful for planning mitigation measures in agricultural semi-arid Mediterranean regions.





2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.



2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.



2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Rui Ito ◽  
Tosiyuki Nakaegawa ◽  
Izuru Takayabu

AbstractEnsembles of climate change projections created by general circulation models (GCMs) with high resolution are increasingly needed to develop adaptation strategies for regional climate change. The Meteorological Research Institute atmospheric GCM version 3.2 (MRI-AGCM3.2), which is listed in the Coupled Model Intercomparison Project phase 5 (CMIP5), has been typically run with resolutions of 60 km and 20 km. Ensembles of MRI-AGCM3.2 consist of members with multiple cumulus convection schemes and different patterns of future sea surface temperature, and are utilized together with their downscaled data; however, the limited size of the high-resolution ensemble may lead to undesirable biases and uncertainty in future climate projections that will limit its appropriateness and effectiveness for studies on climate change and impact assessments. In this study, to develop a comprehensive understanding of the regional precipitation simulated with MRI-AGCM3.2, we investigate how well MRI-AGCM3.2 simulates the present-day regional precipitation around the globe and compare the uncertainty in future precipitation changes and the change projection itself between MRI-AGCM3.2 and the CMIP5 multiple atmosphere–ocean coupled GCM (AOGCM) ensemble. MRI-AGCM3.2 reduces the bias of the regional mean precipitation obtained with the high-performing CMIP5 models, with a reduction of approximately 20% in the bias over the Tibetan Plateau through East Asia and Australia. When 26 global land regions are considered, MRI-AGCM3.2 simulates the spatial pattern and the regional mean realistically in more regions than the individual CMIP5 models. As for the future projections, in 20 of the 26 regions, the sign of annual precipitation change is identical between the 50th percentiles of the MRI-AGCM3.2 ensemble and the CMIP5 multi-model ensemble. In the other six regions around the tropical South Pacific, the differences in modeling with and without atmosphere–ocean coupling may affect the projections. The uncertainty in future changes in annual precipitation from MRI-AGCM3.2 partially overlaps the maximum–minimum uncertainty range from the full ensemble of the CMIP5 models in all regions. Moreover, on average over individual regions, the projections from MRI-AGCM3.2 spread over roughly 0.8 of the uncertainty range from the high-performing CMIP5 models compared to 0.4 of the range of the full ensemble.



Sign in / Sign up

Export Citation Format

Share Document