Mobilization of bacteriophages from soil matrix to soil water in the Attert River basin: A case study

Author(s):  
Perrine Florent ◽  
Henry-Michel Cauchie ◽  
Leslie Ogorzaly

<p>Bacteriophages are numerous, tremendously diverse and ubiquitous in the environment. Since the 1960s, bacteriophages have been proposed as new tracers to investigate the hydrological processes in addition to conventional tracers (i.e. isotopes, salts, dyes). Their dynamic into water (i.e. surface water, groundwater) have been well studied. However, the soil compartment known for its important microbial activity, have been few characterized in terms of bacteriophage diversity. Hence, in the present study, the objective is to investigate the transport of soil viral population from the soil matrix to the soil water compartment. This mobilization from the soil matrix is mainly driven by the adsorption/desorption mechanisms to which bacteriophages are subjected. Therefore, in order to understand the dynamics of the bacteriophage population, both soil and soil water were sampled from the Weierbach forest, located in the Attert River basin (Grand-Duchy of Luxembourg) at the topsoil level (i.e. 0-20 cm) over a period of one month. Due to a lower abundance of the microbial population in soil water, an enrichment method was carried out to increase the concentration. Subsequently, a shotgun metagenomics analysis was performed on the soil and soil water samples to obtain the DNA sequences, which were then sorted using bioinformatics and statistical analyses, allowing ultimately the identification of the viral populations. The moving of the bacteriophage populations from the soil to the soil water provides information on their transport capacity, in particular by taking into account environmental conditions such as air and soil temperatures, precipitation, soil humidity, soil pH, etc.  </p><p> </p><p><strong>Key words</strong>: bacteriophages, soil, water, transport, environmental conditions</p>

2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Renan Rodrigues Rocha ◽  
Rosana de Mesquita Alves ◽  
Rubens Pasa ◽  
Karine Frehner Kavalco

The Astyanax scabripinnis complex is composed of a large number of almost morphological indistinguishable species, including Astyanax paranae and Astyanax rivularis, which exist in the Paraná and São Francisco Basins, respectively, and sometimes are considered subspecies of the A. scabripinnis group or even are cited just as A. scabripinnis. The two river basins are separated by the Upper Paranaíba Arc, likely the main cause of the isolation of these species. We used geometric morphometric tools and DNA analyses of populations of both species to identify the differences between them. Geometric morphometrics separated the two species into distinct groups, whose main difference was the body depth. This is generally related to the speed of the water flow in the river basins. The maximum likelihood phylogram based on mitochondrial DNA sequences formed two main clades: one composed of the population of A. rivularis and the other, of A. paranae. In the haplotype network, the species were similarly separated into two groups from the same ancestral haplotype, with A. rivularis dispersing into two lineages in the São Francisco River Basin. The distribution of A. paranae is a consequence of a secondary dispersion event in the Paraná River Basin. It forms two lineages from a haplotype derived from the ancestor. The vicariant effect of separate basins, through the elevation of the Upper Paranaíba Arc, led to the allopatric speciation of the populations originating the present species. The results of geometric morphometrics and molecular data of the fish show the importance of this geological event in the biogeography and evolutionary history of the ichthyofauna of the region and indicate that the isolation of these species seems to be effective.


2009 ◽  
Vol 21 ◽  
pp. 13-24 ◽  
Author(s):  
Y. Conrad ◽  
N. Fohrer

Abstract. This study provides results for the optimization strategy of highly parameterized models, especially with a high number of unknown input parameters and joint problems in terms of sufficient parameter space. Consequently, the uncertainty in model parameterization and measurements must be considered when highly variable nitrogen losses, e.g. N leaching, are to be predicted. The Bayesian calibration methodology was used to investigate the parameter uncertainty of the process-based CoupModel. Bayesian methods link prior probability distributions of input parameters to likelihood estimates of the simulation results by comparison with measured values. The uncertainty in the updated posterior parameters can be used to conduct an uncertainty analysis of the model output. A number of 24 model variables were optimized during 20 000 simulations to find the "optimum" value for each parameter. The likelihood was computed by comparing simulation results with observed values of 23 output variables including soil water contents, soil temperatures, groundwater level, soil mineral nitrogen, nitrate concentrations below the root zone, denitrification and harvested carbon from grassland plots in Northern Germany for the period 1997–2002. The posterior parameter space was sampled with the Markov Chain Monte Carlo approach to obtain plot-specific posterior parameter distributions for each system. Posterior distributions of the parameters narrowed down in the accepted runs, thus uncertainty decreased. Results from the single-plot optimization showed a plausible reproduction of soil temperatures, soil water contents and water tensions in different soil depths for both systems. The model performed better for these abiotic system properties compared to the results for harvested carbon and soil mineral nitrogen dynamics. The high variability in modeled nitrogen leaching showed that the soil nitrogen conditions are highly uncertain associated with low modeling efficiencies. Simulated nitrate leaching was compared to more general, site-specific estimations, indicating a higher leaching during the seepage periods for both simulated grassland systems.


2020 ◽  
Vol 113 (4) ◽  
pp. 1927-1932
Author(s):  
Cai-hua Shi ◽  
Jing-rong Hu ◽  
You-jun Zhang

Abstract The production of Chinese chives is reduced throughout China due to a root-feeding dipteran pest Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae), therefore deciphering the conditions influencing its growth and development are important in developing ecological control strategies. A study was conducted from 2014 to 2017 to determine the relationship between the abundance of B. odoriphaga and temperature (atmospheric and soil), soil water content, and atmospheric humidity in a Chinese chive field in Beijing City, China. Numbers of adults peaked in March and October to November and were lowest in July to August and December to next February; numbers of larvae were highest in December to next February and lowest in July to August. From 2014 to 2017, the numbers of adults and larvae were significantly correlated with monthly mean atmospheric temperatures and soil temperatures, but were not significantly correlated with monthly mean atmospheric relative humidity and soil water content. However, for both adults and larvae, numbers were significantly greater with high soil water contents compared with drought treatment. The results of this study suggest that the very low soil water contents, high atmospheric temperatures, and high soil temperatures were critical for regulating field populations of B. odoriphaga.


2007 ◽  
Vol 7 ◽  
pp. 605-625
Author(s):  
Daniel De la Torre ◽  
Maria Jose Sierra

The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high.


1986 ◽  
Vol 66 (1) ◽  
pp. 51-58 ◽  
Author(s):  
H. W. CUTFORTH ◽  
C. F. SHAYKEWICH ◽  
C. M. CHO

Root growth between germination and emergence for the corn hybrids Pioneer 3995, Northrup King 403 and Pride 1108 was studied. Soil temperatures of 15, 19, 25 and 30.5 °C and a range of soil water contents were used. Decreases in soil temperature and water content both decreased root growth rate. Sensitivity to water content decreased with decreasing soil temperature. All three hybrids responded to soil temperature in the same way. By contrast, Pioneer 3995 was less sensitive to soil water stress than was Northrup King 403, while Pride 1108 was the most sensitive. Key words: Soil water, soil temperature, root growth (early), corn


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
František Doležal ◽  
David Zumr ◽  
Josef Vacek ◽  
Josef Zavadil ◽  
Adriano Battilani ◽  
...  

AbstractWater movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland made it possible to derive improved estimates of some parameters for the dual permeability model S1D_DUAL. A reasonably good agreement between the measured and the estimated soil hydraulic properties was obtained. The measured root zone depths were near to those obtained by inverse simulation with S1D _DUAL and to a boundary curve approximation. The measured and S1D _DUAL-simulated soil water pressure heads were comparable with those achieved by simulations with the Daisy model. During dry spells, the measured pressure heads tended to be higher than the simulated ones. In general, the former oscillated between the simulated values for soil matrix and those for the preferential flow (PF) domain. Irrigation facilitated deep seepage after rain events. We conclude that several parallel soil moisture sensors are needed for adequate irrigation control. The sensors cannot detect the time when the irrigation should be stopped.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Charles A. King ◽  
Lawrence R. Oliver

Experiments were conducted to evaluate the influence of temperature and water potential on water uptake, germination, and emergence of large crabgrass in order to predict emergence in the field. Water uptake of seed soaked in polyethylene glycol solutions of 0 to −1400 kPa underwent an initial imbibition phase followed by a lag phase and subsequent increase in water content when radicles emerged from the seed. Maximum germination at 15 C was 12% at 0 kPa and 60% at 25 C at 0 to −200 kPa osmotic potential. In the growth chamber, large crabgrass emergence from soil began 2 to 3 d after planting at 30 or 35 C and within 9 to 10 d at 15 C. Maximum emergence of 77 % occurred at 25 C and at a soil water potential of −30 kPa. Emergence percentage decreased as water potential decreased or as temperature increased or decreased. A logistic equation described emergence of large crabgrass at each combination of temperature and soil water potential at which emergence occurred, and a predictive model was developed and validated by field data. In the field, there was little or no emergence at soil temperatures below 15 C or water potentials below −50 to −60 kPa. The model predicted the time of onset of large crabgrass emergence and the time to reach maximum emergence to within 2 to 4 d of that recorded in field experiments. The model also predicted the correct number of flushes of emergence occurring in the field in three of four experiments.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 466 ◽  
Author(s):  
Heechan Han ◽  
Jungho Kim ◽  
V. Chandrasekar ◽  
Jeongho Choi ◽  
Sanghun Lim

This study aims to address hydrological processes and impacts of an atmospheric river (AR) event that occurred during 15–18 February 2004 in the Russian River basin in California. The National Water Model (NWM), a fully distributed hydrologic model, was used to evaluate the hydrological processes including soil moisture flux, overland flow, and streamflow. Observed streamflow and volumetric soil water content data were used to evaluate the performance of the NWM using various error metrics. The simulation results showed that this AR event (15–18 February 2004) with a long duration of precipitation could cause not only deep soil saturation, but also high direct runoff depth. Taken together, the analysis revealed the complex interaction between precipitation and land surface response to the AR event. The results emphasize the significance of a change of water contents in various soil layers and suggest that soil water content monitoring could aid in improving flood forecasting accuracy caused by the extreme events such as the AR.


Sign in / Sign up

Export Citation Format

Share Document