Tracking signal propagation through landscapes using a granular avalanching system

Author(s):  
Chloe Griffin ◽  
Jonathan Higham ◽  
Robert Duller ◽  
Kyle Straub

<p>Landscapes have the ability to transmit environmental signals or inhibit them. The mechanisms by which landscapes do this are largely unquantified, but is probably due to the ability of landscapes to transiently store and release sediment which acts as a medium for energy to propagate. Previous experiments using 1D avalanching rice piles suggest that stochastic collapses can overprint, or shred, periodic sedimentary signals (Jerolmack and Paola (2010), as measured using mass efflux from the experimental rice pile. Jerolmack and Paola (2010) defined a threshold for successful surface signal propagation: Tx, where signals with a period less than Tx are shredded, unless the magnitude of the signal is sufficiently large. We aim to utilise the rice pile to further investigate signal propagation across a landscape, and the thresholds for this, by quantifying inter-particle interactions and the mechanics of how signals propagate using a quasi-2D rice pile model, built using MFiX-DEM code. This open source, physics model utilises individual particles which compose the solid phase whilst treating the fluid as a continuum. The rice grains in the model are represented by spherical particles, where each individual particle, or cluster of particles, can be tracked through each time step using a coordinate axis system, allowing internal dynamics, such as avalanche sizes and sediment residence times, to be quantified. To certify the model replicates the self-organised nature of an experimental rice pile, sensitivity tests were performed by systematically changing two key parameters controlling grain interactions: the friction coefficient and the coefficient of restitution, alongside the sediment flux. To calibrate the results of the sensitivity analysis, mass efflux through time and the corresponding power spectra are compared to real experimental rice pile results and statistical rice pile models. It is hoped this work will provide fundamental insights into how a signal propagates through a landscapes, and how they are shredded in the process.   </p>

2021 ◽  
Author(s):  
Robert Duller ◽  
Stephan Toby ◽  
Silvio De Angelis ◽  
Kyle Straub

<p>The assertion that stratigraphy will store environmental signals, such as sediment flux signals related to paleoclimate and tectonics, is debatable because that same stratigraphy can also store signals of autogenic processes that overprint and replace allogenic signals (“shred”). To establish the likelihood that strata will contain allogenic signals, the focus should be on quantifying autogenic processes. Models show that stratigraphic storage of allogenic sediment flux signals will only take place if it exceeds a threshold condition set by autogenic processes. This is supported by experimental and numerical models but its validation is hindered by low spatio-temporal resolution of stratigraphic datasets. We address this by reformulating a theoretical framework that dispenses with the need for exquisite temporal resolution. To demonstrate the applicability of our approach we explore the potential for environmental signal propagation and preservation in two ancient field systems: a small Pleistocene delta in Greece and a larger Eocene sediment routing system in the Spanish Pyrenees. This work demonstrates how short-term system dynamics can be integrated with long-term basin dynamics to provide a framework that assesses the capacity of sedimentary systems to store environmental signals.</p>


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Stephan C. Toby ◽  
Robert A. Duller ◽  
Silvio De Angelis ◽  
Kyle M. Straub

AbstractThe sedimentary record contains unique information about landscape response to environmental forcing at timescales that far exceed landscape observations over human timescales. However, stochastic processes can overprint and shred evidence of environmental signals, such as sediment flux signals, and so inhibit their transfer to strata. Our community currently lacks a quantitative framework to differentiate between environmental signals and autogenic signals in field-scale analysis of strata. Here we develop a framework and workflow to estimate autogenic thresholds for ancient sediment routing systems. Crucially these thresholds can be approximated using measurements that are readily attainable from field systems, circumventing the low temporal resolution offered by strata. This work demonstrates how short-term system dynamics can be accessed from ancient sediment routing systems to place morphodynamic limits on environmental signal propagation across ancient landscapes and into strata.


2021 ◽  
Author(s):  
Bertrand Rollin ◽  
Frederick Ouellet ◽  
Bradford Durant ◽  
Rahul Babu Koneru ◽  
S. Balachandar

Abstract We study the interaction of a planar air shock with a perturbed, monodispersed, particle curtain using point-particle simulations. In this Eulerian-Lagrangian approach, equations of motion are solved to track the position, momentum, and energy of the computational particles while the carrier fluid flow is computed in the Eulerian frame of reference. In contrast with many Shock-Driven Multiphase Instability (SDMI) studies, we investigate a configuration with an initially high particle volume fraction, which produces a strongly two-way coupled flow in the early moments following the shock-solid phase interaction. In the present study, the curtain is about 4 mm in thickness and has a peak volume fraction of about 26%. It is composed of spherical particles of d = 115μm in diameter and a density of 2500 kg.m−3, thus replicating glass particles commonly used in multiphase shock tube experiments or multiphase explosive experiments. We characterize both the evolution of the perturbed particle curtain and the gas initially trapped inside the particle curtain in our planar three-dimensional numerical shock tube. Control parameters such as the shock strength, the particle curtain perturbation wavelength and particle volume fraction peak-to-trough amplitude are varied to quantify their influence on the evolution of the particle cloud and the initially trapped gas. We also analyze the vortical motion in the flow field. Our results indicate that the shock strength is the primary contributor to the cloud particle width. Also, a classic Richtmyer-Meshkov instability mixes the gas initially trapped in the particle curtain and the surrounding gas. Finally, we observe that the particle cloud contribute to the formation of longitudinal vortices in the downstream flow.


Author(s):  
Santhip Krishnan Kanholy ◽  
Francine Battaglia

The hydrodynamics of fluidized beds involving gas and particle interactions are very complex and must be carefully considered when using computational fluid dynamics (CFD). Modeling particle interactions are even more challenging for binary mixtures composed of varying particle characteristics such as diameter or density. One issue is the presence of dead-zones, regions of particles that do not fluidize and accumulate at the bottom, affecting uniform fluidization. In Eulerian-Eulerian modeling, the solid phase is assumed to behave like a fluid and the presence of dead zones are not typically captured in a simulation. Instead, the entire bed mass present in an experiment is modeled, which assumes full fluidization. The paper will present modeling approaches that account for only the fluidizing mass by adjusting the initial mass present in the bed using pressure drop and minimum fluidization velocity from experiments. In order to demonstrate the fidelity of the new modeling approach, different bed materials are examined. Binary mixture models are also validated for two types of mixtures consisting of glass-ceramic and ceramic-ceramic compositions. It will be shown that adjusting the mass in the modeling of fluidized beds best represents the measured quantities of an experiment for both single-phase and binary mixtures.


Author(s):  
A. V. Mitrofanov ◽  
V. E. Mizonov ◽  
N. S. Shpeynova ◽  
S. V. Vasilevich ◽  
N. K. Kasatkina

The article presents the results of computational and experimental studies of the distribution of a model material (plastic spherical particles with a size of 6 mm) along the height of a laboratory two-dimensional apparatus of the fluidized bed of the periodic principle of action. To experimentally determine the distribution of the solid phase over the height of the apparatus, digital photographs of the fluidized bed were taken, which were then analyzed using an algorithm that had been specially developed for this purpose. The algorithm involved splitting the image by height into separate rectangular areas, identifying the particles and counting their number in each of these areas. Numerical experiments were performed using the previously proposed one-dimensional cell model of the fluidization process, constructed on the basis of the mathematical apparatus of the theory of Markov chains with discrete space and time. The design scheme of the model assumes the spatial decomposition of the layer in height into individual elements of small finite sizes. Thus, the numerically obtained results qualitatively corresponded to the full-scale field experiment that had been set up. To ensure the quantitative reliability of the calculated forecasts, a parametric identification of the model was performed using known empirical dependencies to calculate the particle resistance coefficient and estimate the coefficient of their macrodiffusion. A comparison of the results of numerical and field experiments made us possible to identify the most productive empirical dependencies that correspond to the cellular scheme of modeling the process. The resulting physical and mathematical model has a high predictive efficiency and can be used for engineering calculations of devices with a fluidized bed, as well as for setting and solving problems of optimal control of technological processes in these devices for various target functions.


2021 ◽  
Author(s):  
Boris Gailleton ◽  
Luca Malatesta ◽  
Jean Braun ◽  
Guillaume Cordonnier

<p>Many laws have been developed to describe the different aspects of landscape evolution at large spatial and temporal scales. Natural landscapes have heterogeneous properties (lithologies, climates, tectonics, etc.) that are associated with multiple coexisting processes. In turn, this can demand different mathematical expressions to model landscape evolution as a function of time and or space. Landscape Evolution Models are mostly designed to facilitate the combination of different landscape-wide laws in a plug-and-play way and many frameworks are being developed in this aim. However, most current frameworks cannot capture important landscape processes such as lake dynamics and full sediment tracing because they are optimized for speed and handle fluxes separately. Several processes require information from more than the immediate neighboring cells within a time step and demand an integrated knowledge from the entire upstream trajectory. Lakes for example require knowledge of all upstream water and sediment fluxes to be filled. These can only be known if all the laws controlling those have been processed. Tackling these situation with a grid logic requires substantial amount of numerical refactoring from existing models.</p><p>We present an alternative method to tackle landscape evolution modelling in heterogeneous landscapes with a framework inspired from Lagrangian and cellular automaton methods. Our framework only relies on the assumption that upstream nodes needs to be processed before the downstream ones, including lakes with outlets, in order to process all selected governing equations on a pixel-to-pixel basis. This way, we ensure that the true content of sediment and water fluxes can be known and tracked at any points. We first utilise graph theory to (i) find the most comprehensive path to reroute water through depressions and (ii) determine a generic multiple flow topological order (any node is processed after all potential upstream ones). Particles that register and track all fluxes simultaneously can then "roll" on the landscape and merge between each other while interacting with the grid.</p><p>This formulation makes possible a number of generic features. (i) The laws can be dynamically adapted to the environment (e.g. switching from single to multiple flow function of water content, adapting erodibility function of the sediment composition and quantity), (ii) Depressions can be explicitly managed, filled (or not) and separated from the rest of the landscape (e.g. sedimentation or evaporation in lakes) as a function function of inputted fluxes and parameters, (iii) full provenance, transport time, and deposition tracking as the particle can always keep in memory where the fluxes are from and in what proportions. In this contribution, we demonstrate the impact the importance of considering these additional elements in landscape evolution. In particular, lake dynamic can significantly impact the long-term signal propagation from source to sink.</p>


Quaternary ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
Wojciech Tylmann ◽  
Bernd Zolitschka

The collection of papers entitled “Annually Laminated Lake Sediments” illustrates the recent progress made in varved sediment research and highlights the variety of methodological approaches and research directions used. The contributions cover the monitoring of modern sediment fluxes using sediment traps, geochronological and sedimentological analyses of varves, multi-proxy investigations, including geochemical and biological proxies, as well as spatiotemporal analyses based on multi-core studies supported by satellite images. The scientific issues discussed the influences of hydroclimatological phenomena on short-term changes in sediment flux, the relationships between biogeochemical processes in the water column and the formation of varves, the preservation of environmental signals in varves, and possibilities of synchronizing varved records with other high-resolution environmental archives.


2016 ◽  
Vol 788 ◽  
pp. 640-669 ◽  
Author(s):  
Walter Fornari ◽  
Francesco Picano ◽  
Luca Brandt

Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows, yet little is known about the behaviour of finite-size particles in homogeneous isotropic turbulence. To fill this gap, we perform direct numerical simulations of sedimentation in quiescent and turbulent environments using an immersed boundary method to account for the dispersed rigid spherical particles. The solid volume fractions considered are ${\it\phi}=0.5{-}1\,\%$, while the solid to fluid density ratio ${\it\rho}_{p}/{\it\rho}_{f}=1.02$. The particle radius is chosen to be approximately six Kolmogorov length scales. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. The reductions with respect to a single particle in quiescent fluid are approximately 12 % and 14 % for the two volume fractions investigated. The probability density function of the particle velocity is almost Gaussian in a turbulent flow, whereas it displays large positive tails in quiescent fluid. These tails are associated with the intermittent fast sedimentation of particle pairs in drafting–kissing–tumbling motions. The particle lateral dispersion is higher in a turbulent flow, whereas the vertical one is, surprisingly, of comparable magnitude as a consequence of the highly intermittent behaviour observed in the quiescent fluid. Using the concept of mean relative velocity we estimate the mean drag coefficient from empirical formulae and show that non-stationary effects, related to vortex shedding, explain the increased reduction in mean settling velocity in a turbulent environment.


2018 ◽  
Vol 183 ◽  
pp. 01042 ◽  
Author(s):  
Igor Vorobtsov ◽  
Aleksandr Belov ◽  
Andrey Petrov

The development of time-step boundary-element scheme for the three dimensional boundaryvalue problems of poroelastodynamics is presented. The poroelastic continuum is described using Biot’s mathematical model. Poroelastic material is assumed to consist of a solid phase constituting an elastic formdefining skeleton and carrying most of the loading, and two fluid phases filling the pores. Dynamic equations of the poroelastic medium are written for unknown functions of displacement of the elastic skeleton and pore pressures of the filling materials. Green’s matrices and, based on it, boundary integral equations are written in Laplace domain. Discrete analogue are obtained by applying the collocation method to a regularized boundary integral equation. Boundary element scheme is based on time-step method of numerical inversion of Laplace transform. A modification of the time-step scheme on the nodes of Runge-Kutta methods is considered. The Runge-Kutta scheme is exemplified with 2-and 3-stage Radau schemes. The results of comparing the two schemes in analyzing a numerical example are presented.


2007 ◽  
Vol 581 ◽  
pp. 129-156 ◽  
Author(s):  
H. LUO ◽  
C. POZRIKIDIS

The interception of two spherical particles with arbitrary size in an infinite linear ambient Stokes flow is considered. The particle surfaces allow for slip according to the Navier–Maxwell–Basset law relating the shear stress to the tangential velocity. At any instant, the flow is computed in a frame of reference with origin at the centre of one particle using a cylindrical polar coordinate system whose axis of revolution passes through the centre of the second particle. Taking advantage of the axial symmetry of the boundaries of the flow in the particle coordinates, the problem is formulated as a system of integral equations for the zeroth, first, and second Fourier coefficients of the boundary traction with respect to the meridional angle. The force and torque exerted on each particle are determined by the zeroth and first Fourier coefficients, while the stresslet is determined by the zeroth, first, and second Fourier coefficients. The derived integral equations are solved with high accuracy using a boundary element method featuring adaptive element distribution and automatic time step adjustment according to the inter-particle gap. The results strongly suggest the existence of a critical value for the slip coefficient below which the surfaces of two particle collide after a finite interception time. The critical value depends on the relative initial particle positions. The particle stress tensor and coefficients of the linear and quadratic terms in the expansion of the effective viscosity of a dilute suspension in terms of the concentration in simple shear flow are discussed and evaluated. Surface slip significantly reduces the values of both coefficients and the longitudinal particle self-diffusivity.


Sign in / Sign up

Export Citation Format

Share Document