Global Carbon Fluxes Induced by Agriculture-Related Land-Use and Land Cover Change Activities

Author(s):  
Atul Jain ◽  
Xiaoming Xu ◽  
Shijie Shu

<p>The aim of this study is to estimate the net carbon fluxes from agriculture-related land-use and land cover change (LULCC) activities, which are referred to as emissions from the land due to human activities. These include land use (LU, e.g., farmland for food and feed production, including management) and land cover changes (LCC, e.g., deforestation for and reforestation of agricultural land, and conversion of grasslands and pastureland to agriculture land or vice versa). Agriculture land-use practices could be a source of atmospheric CO2. However, the management of agricultural practices may reduce carbon emissions and increase soil carbon sequestration. Simultaneously, land-cover change activities clear existing ecosystems, their biomass and disturb the soil, generating carbon emissions. Previous earth system models usually have a simple or no representation of land agriculture practices, such as planting crops, fertilization, irrigation, harvesting grains for food and livestock-feed, recovering crop residue for feed and other usages, and grazing, livestock-feed, and manure cycle. This study uses a land surface model with spatially heterogeneous representations of such agricultural land use activities, in addition to land cover change, such as the change from forest to agricultural land. Our study shows the net agricultural land area increase of 0.11 million hectares/yr during 2007-2013, including 2.12 million hectares/yr of other land converted to agricultural land and 2.01 million hectares/yr of agricultural land converted to other lands. The results show that global net carbon flux due to agriculture-related LULCC is 2.26 Pg C/yr (net emission), consisting of 38% due to land-use activities and 62% due to land cover change. South America (22%), North America (19%), and South and Southeast Asia (13%) are the top contributing regions for net carbon flux induced by LULCC. South America has contributed the most flux from land cover change (18%), while North America has generated the most carbon flux due to land-use activities (12%) among all macro geopolitical regions.  By quantifying the carbon fluxes induced by different agriculture activities this study provides a complete estimate of the yearly carbon cycle in the agriculture system at the spatial scale, which may improve the representations of agriculture land use activities in Earth System Models.</p>

2022 ◽  
Author(s):  
TC Chakraborty ◽  
Yun Qian

Abstract Although the influence of land use/land cover change on climate has become increasingly apparent, cities and other built-up areas are usually ignored when estimating large-scale historical climate change or for future projections since cities cover a small fraction of the terrestrial land surface1,2. As such, ground-based observations of urban near-surface meteorology are rare and most earth system models do not represent historical or future urban land cover3–7. Here, by combining global satellite observations of land surface temperature with historical estimates of built-up area, we demonstrate that the urban temperature signal on continental- to regional-scale warming has become non-negligible, especially for rapidly urbanizing regions in Asia. Consequently, expected urban expansion over the next century suggest further increased urban influence on surface climate under all future climate scenarios. Based on these results, we argue that, in line with other forms of land use/land cover change, urbanization should be explicitly included in future climate change assessments. This would require extensive model development to incorporate urban extent and biophysics in current-generation earth system models to quantify potential urban feedbacks on the climate system at multiple scales.


2013 ◽  
Vol 9 (3) ◽  
pp. 1111-1140 ◽  
Author(s):  
M. Eby ◽  
A. J. Weaver ◽  
K. Alexander ◽  
K. Zickfeld ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.


2018 ◽  
Vol 10 (2) ◽  
pp. 56 ◽  
Author(s):  
Marie Caroline Solefack Momo ◽  
Andre Ledoux Njouonkou ◽  
Lucie Felicite Temgoua ◽  
Romuald Djouda Zangmene ◽  
Junior Baudoin Wouokoue Taffo ◽  
...  

This study assesses land cover change of the Koupa Matapit forest gallery, West Cameroon, in relation to anthropogenic factors. Ethnobotanical surveys were conducted to investigate the relationships between the local population and the gallery forest; the spatio-temporal dynamics of the landscapes around the gallery forest were studied from the diachronic analysis of three Landsat TM satellite images of 1984, Landsat ETM + 1999 and Landsat OLI_TIRS of 2016, supplemented by verification missions on field. The satellite images were processed using ArcGIS and Erdas Imagine software. According to surveys, it should be noted that agriculture and livestock are the main economic activities of the population of Koupa Matapit, agriculture and fuel wood collection for energy were the main anthropogenic activities responsible for deforestation and degradation of the forest gallery. The collection of non-timber forest products (NTFPs) would have a significant implication in land use and cover changes. The results indicate that the extension of savannah/agricultural land (from 6989 ha in 1984 to 7604 ha in 2016) and bare soil/built up area (from 71 ha in 1984 to 342 ha in 2016) would have led to the disappearance of much of the forest area (1465 ha in 1984 to 580 ha in 2016). The rapid population growth of Koupa Matapit would be responsible for these pressures. There is an urgent need to implement appropriate land use policy in this area.


2021 ◽  
Vol 13 (16) ◽  
pp. 3337
Author(s):  
Shaker Ul Din ◽  
Hugo Wai Leung Mak

Land-use/land cover change (LUCC) is an important problem in developing and under-developing countries with regard to global climatic changes and urban morphological distribution. Since the 1900s, urbanization has become an underlying cause of LUCC, and more than 55% of the world’s population resides in cities. The speedy growth, development and expansion of urban centers, rapid inhabitant’s growth, land insufficiency, the necessity for more manufacture, advancement of technologies remain among the several drivers of LUCC around the globe at present. In this study, the urban expansion or sprawl, together with spatial dynamics of Hyderabad, Pakistan over the last four decades were investigated and reviewed, based on remotely sensed Landsat images from 1979 to 2020. In particular, radiometric and atmospheric corrections were applied to these raw images, then the Gaussian-based Radial Basis Function (RBF) kernel was used for training, within the 10-fold support vector machine (SVM) supervised classification framework. After spatial LUCC maps were retrieved, different metrics like Producer’s Accuracy (PA), User’s Accuracy (UA) and KAPPA coefficient (KC) were adopted for spatial accuracy assessment to ensure the reliability of the proposed satellite-based retrieval mechanism. Landsat-derived results showed that there was an increase in the amount of built-up area and a decrease in vegetation and agricultural lands. Built-up area in 1979 only covered 30.69% of the total area, while it has increased and reached 65.04% after four decades. In contrast, continuous reduction of agricultural land, vegetation, waterbody, and barren land was observed. Overall, throughout the four-decade period, the portions of agricultural land, vegetation, waterbody, and barren land have decreased by 13.74%, 46.41%, 49.64% and 85.27%, respectively. These remotely observed changes highlight and symbolize the spatial characteristics of “rural to urban transition” and socioeconomic development within a modernized city, Hyderabad, which open new windows for detecting potential land-use changes and laying down feasible future urban development and planning strategies.


2008 ◽  
Vol 8 (1) ◽  
pp. 3843-3893 ◽  
Author(s):  
A. Ito ◽  
J. E. Penner ◽  
M. J. Prather ◽  
C. P. de Campos ◽  
R. A. Houghton ◽  
...  

Abstract. The effect of Land Use Change and Forestry (LUCF) on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.


2018 ◽  
Vol 11 ◽  
pp. 77-94 ◽  
Author(s):  
Prem Sagar Chapagain ◽  
Mohan Kumar Rai ◽  
Basanta Paudel

Land use/land cover situation is an important indicator of human interaction with environment. It reflects both environmental situation and the livelihood strategies of the people in space over time. This paper has attempted to study the land use/ land cover change of Sidin VDC, in the Koshi River basin in Nepal, based on maps and Remote sensing imageries (RS) data and household survey using structured questionnaires, focus group discussion and key informant interview. The study has focused on analysis the trend and pathways of land use change by dividing the study area into three elevation zones – upper, middle and lower. The time series data analysis from 1994-2004-2014 show major changes in forest and agricultural land. The dominant pathways of change is from forest to agriculture and forest to shrub during 1994-2004 and agriculture to forest during 2004-2014. The development of community forest, labor migration and labor shortage are found the major causes of land use change.The Geographical Journal of NepalVol. 11: 77-94, 2018


2019 ◽  
Author(s):  
Lei Ma ◽  
George C. Hurtt ◽  
Louise P. Chini ◽  
Ritvik Sahajpal ◽  
Julia Pongratz ◽  
...  

Abstract. Information on historical land-cover change is important for understanding human impacts on the environment. Over the last decade, global models have characterized historical land-use changes, but few have been able to relate these changes with corresponding changes in land-cover. Utilizing the latest global land-use change data, we make several assumptions about the relationship between land-use and land-cover change, and evaluate each scenario with remote sensing data to identify optimal fit. The resulting transition rule can guide the incorporation of land-cover information within earth system models.


2020 ◽  
Vol 12 (9) ◽  
pp. 3925 ◽  
Author(s):  
Sonam Wangyel Wang ◽  
Belay Manjur Gebru ◽  
Munkhnasan Lamchin ◽  
Rijan Bhakta Kayastha ◽  
Woo-Kyun Lee

Understanding land use and land cover changes has become a necessity in managing and monitoring natural resources and development especially urban planning. Remote sensing and geographical information systems are proven tools for assessing land use and land cover changes that help planners to advance sustainability. Our study used remote sensing and geographical information system to detect and predict land use and land cover changes in one of the world’s most vulnerable and rapidly growing city of Kathmandu in Nepal. We found that over a period of 20 years (from 1990 to 2010), the Kathmandu district has lost 9.28% of its forests, 9.80% of its agricultural land and 77% of its water bodies. Significant amounts of these losses have been absorbed by the expanding urbanized areas, which has gained 52.47% of land. Predictions of land use and land cover change trends for 2030 show worsening trends with forest, agriculture and water bodies to decrease by an additional 14.43%, 16.67% and 25.83%, respectively. The highest gain in 2030 is predicted for urbanized areas at 18.55%. Rapid urbanization—coupled with lack of proper planning and high rural-urban migration—is the key driver of these changes. These changes are associated with loss of ecosystem services which will negatively impact human wellbeing in the city. We recommend city planners to mainstream ecosystem-based adaptation and mitigation into urban plans supported by strong policy and funds.


2014 ◽  
Vol 5 (1) ◽  
pp. 177-195 ◽  
Author(s):  
J. Pongratz ◽  
C. H. Reick ◽  
R. A. Houghton ◽  
J. I. House

Abstract. Reasons for the large uncertainty in land use and land cover change (LULCC) emissions go beyond recognized issues related to the available data on land cover change and the fact that model simulations rely on a simplified and incomplete description of the complexity of biological and LULCC processes. The large range across published LULCC emission estimates is also fundamentally driven by the fact that the net LULCC flux is defined and calculated in different ways across models. We introduce a conceptual framework that allows us to compare the different types of models and simulation setups used to derive land use fluxes. We find that published studies are based on at least nine different definitions of the net LULCC flux. Many multi-model syntheses lack a clear agreement on definition. Our analysis reveals three key processes that are accounted for in different ways: the land use feedback, the loss of additional sink capacity, and legacy (regrowth and decomposition) fluxes. We show that these terminological differences, alone, explain differences between published net LULCC flux estimates that are of the same order as the published estimates themselves. This has consequences for quantifications of the residual terrestrial sink: the spread in estimates caused by terminological differences is conveyed to those of the residual sink. Furthermore, the application of inconsistent definitions of net LULCC flux and residual sink has led to double-counting of fluxes in the past. While the decision to use a specific definition of the net LULCC flux will depend on the scientific application and potential political considerations, our analysis shows that the uncertainty of the net LULCC flux can be substantially reduced when the existing terminological confusion is resolved.


2010 ◽  
Vol 30 (13) ◽  
pp. 2118-2128 ◽  
Author(s):  
Kathy Hibbard ◽  
Anthony Janetos ◽  
Detlef P. van Vuuren ◽  
Julia Pongratz ◽  
Steven K. Rose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document