Pristine metasomatic melt preserved in mantle rocks of the Bohemian Massif

Author(s):  
Alessia Borghini ◽  
Silvio Ferrero ◽  
Patrick J. O'Brien ◽  
Bernd Wunder ◽  
Oscar Laurent

<p>Melt inclusions of very unusual nature occur in garnets of eclogites of the Granulitgebirge, Bohemian Massif. This is one of the first direct characterization of a preserved metasomatic melt responsible for the formation of eclogites enclosed in garnet peridotites. The inclusions are micrometric, from glassy to fully crystalized as nanogranitoids and randomly distributed in the garnet core. Nanogranitoids contain kumdykolite/albite, phlogopite, osumilite and kokchetavite with a variable amount of quartz, pyroxene, carbonate and rare white mica. The melt has a granitic composition rather than basaltic or tonalitic/trondhjemitic as would be expected from the partial melting of ultramafic or mafic rocks and it is as well hydrous and peraluminous. The trace elements composition is also unusual for melts in mantle rocks with elements typical of continental crust (Cs, Li, B, Pb and Rb) and subduction zone (Th and U). Similar signatures, i.e. continental crust and subduction, are visible also in the whole rock trace elements in the form of high amounts of LILE and U. The eclogite major elements composition is similar to a Ca- and Fe - rich mafic rock akin more to the crust than to the mantle.</p><p>The peculiar melt composition and the lack of a clear residue of a melting reaction in the eclogites suggest that this melt is external, i.e. metasomatic. It infiltered the peridotites during subduction of the continental crust at mantle depth and aided the transformation of basic layers, already in the peridotite, to eclogite. In addition, similar trace elements patterns to the melt reported here can be found in the so-called durbachite -ultrapotassic melanosyenite present in the high-grade Variscan basement- and in the garnet peridotites and garnet pyroxenites of the T-7 borehole. In both case metasomatism was suggested but the agent was just inferred based on the geochemical signature. All these occurrences suggest that mantle contaminated by melts from deeply subducted continental crust is widespread beneath the Bohemian Massif.</p>

1984 ◽  
Vol 43 ◽  
Author(s):  
D. J. Hassett ◽  
G. J. McCarthy ◽  
K. R. Henke ◽  
E. D. Korynta

AbstractLignite gasification ash from the Morgantown Energy Technology Center (METC) gasifier was subiected to two short-term leaching treatments. The cnncentrations of regulated elements in the EPA EP procedure leachate from the bulk METC ash did not exceed the “EP Trigger Limits.” A modification of this procedure that uses a basic synthetic groundwater instead of the acid EP extractant was also performed on the bulk ash and its eleven size fractions. Water equilibria modeling was used to explain the concentrations of major elements in solution. Corcentrations of minor and trace elements in solution after leaching with synthetic groundwater were also below “EP Trigger Limits.”


2019 ◽  
Vol 486 (5) ◽  
pp. 583-587
Author(s):  
A. M. Agashev

The paper presents the results of major and trace elements composition study of garnet megacrysts from Mir kimberlite pipe. On the major elements composition those garnets classified as low Cr and high Ti pyropes. Concentrations of TiO2 show a negative correlation with MgO и Cr2O3 contents in megacrysts composition. Fractional crystallization modeling indicates that the most appropriate melt to reproduce the garnet trace elements signatures is the melt of picritic composition. Composition of garnets crystallized from kimberlite melt do not correspond to observed natural garnets composition. Kimberlites contain less of Ti, Zr, Y and heavy REE (rare earth elements) but more of very incompatible elements such as light REE, Th, U, Nb, Ba then the model melt composition that necessary for garnet crystallization.


Diabetes ◽  
1990 ◽  
Vol 39 (10) ◽  
pp. 1243-1250 ◽  
Author(s):  
L. Rossetti ◽  
A. Giaccari ◽  
E. Klein-Robbenhaar ◽  
L. R. Vogel

2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2021 ◽  
Author(s):  
Chourouk Romdhani ◽  
Zahrah Alhalili ◽  
Soumaya Elarbaoui ◽  
Moez Smiri

Abstract Thiols represent a source of environmental pollution especially wastewater. The present work aims to evaluate the degradation of sulfur in two biological treatment plants in Tunisia: conventional plant of Rades Malienne, and vertical and horizontal flow from the Grombalia plant. We analyzed (1) wastewater properties, (2) the hydrosulfur (thiol) group, (3) membrane processes ultrafiltration technique and (4) characterization of the quality of wastewater from different plants. We used ultrafiltration membrane assisted ZnO and TiO2 NPs application on real effluents from different biological treatment plants. STEP1 is found to be more loaded with sulphur. Application of AC-ZnO membrane gives 99.07% and 99.55% of sulfur removal from wastewater of STEP1 and STEP3. STEP3 is 50 times less charged on sulfur than STEP1. We suggested that when the sulphur content is high, this leads to an increase in mineral elements. This could be explained by the interactions between thiols and the major elements that cause mineral pollution.


2021 ◽  
Vol 43 (4) ◽  
pp. 50-55
Author(s):  
L.V. SHUMLYANSKYY ◽  
V. KAMENETSKY ◽  
B.V. BORODYNYA

Results of a study of U-Pb and Hf isotope systematics and trace element concentrations in five zircon crystals separated from the Devonian Petrivske kimberlite are reported in the paper. Four zircons have yielded Paleoproterozoic and Archean ages, while one zircon grain gave a Devonian age of 383.6±4.4 Ma (weighted mean 206Pb/238U age). The Precambrian zircons have been derived from terrigenous rocks of the Mykolaivka Suite that is cut by kimberlite, or directly from the Precambrian rock complexes that constitute continental crust in the East Azov. The Devonian zircon crystal has the U-Pb age that corresponds to the age of kimberlite emplacement. It is 14 m.y. younger than zircon megacrysts found in the Novolaspa kimberlite pipe in the same area. In addition, Petrivske zircon is richer in trace elements than its counterparts from the Novolaspa pipe. Petrivske and Novolaspa zircons crystallized from two different proto-kimberlite melts, whereas the process of kimberlite formation was very complex and possibly included several episodes of formation of proto-kimberlite melts, separated by extended (over 10 M.y.) periods of time.


2019 ◽  
Vol 70 (3) ◽  
pp. 382 ◽  
Author(s):  
Nidia I. Tobón Velázquez ◽  
Mario Rebolledo Vieyra ◽  
Adina Paytan ◽  
Kyle H. Broach ◽  
Laura M. Hernández Terrones

The aim of the study is to determine the distribution of trace and major elements in the water and in the sediments of the south part of the Bacalar Lagoon and to identify the sources of the trace elements and their changes over time. The western part of the lagoon water column is characterised by high concentrations of Ca2+, HCO3– and Sr2+, derived from groundwater input. In contrast, the eastern part of the lagoon is characterised by high concentrations of Mg2+, Na+ and Cl–. The lagoon is not affected by present-day seawater intrusion. Water column and sediment geochemical analyses performed in Bacalar Lagoon show clear spatial distribution of different parameters. The saturation index of the water column indicates three main groups: (1) a zone oversaturated with regard to aragonite, calcite and dolomite; (2) an undersaturated area where all three minerals are dissolving; and (3) an area with calcite equilibrium and undersaturation with regard to the other minerals. Herein we present the first measurements of trace element (Ba2+, Mn2+, K+, Ni2+, Zn2+) concentrations in carbonates obtained from sediments in Bacalar Lagoon. In order to evaluate whether the trace elements are derived from natural or anthropogenic sources, four pollution indices were calculated. The results confirmed that Bacalar Lagoon sediments are not contaminated with Ni2+, K+, Mn2+ and Ba2+, and that the Zn2+ seems to have a predominantly anthropogenic origin.


1966 ◽  
Vol 67 (1) ◽  
pp. 77-80 ◽  
Author(s):  
W. M. Ashton ◽  
I. M. Yousef

1. This paper provides further information on the mineral content of the milk of Clun Forest ewes, particularly those elements not dealt with in a previous paper, namely, magnesium, sodium, potassium, and certain trace elements.2. The average composition was as follows: calcium 0.200, magnesium 0.0147, sodium 0.046, potassium 0.168, phosphorus 0.140 and chlorine 0.076%; copper 0.22, iron 0.77, manganese 0.07 and aluminium 1.7 parts per million. Where possible the results are compared with those obtained by other workers for ewe's and cow's milk.3. Statistical analysis of the data showed that, with the exception of phosphorus, the content of major elements varied significantly during the lactation period. There was also a significant variation in all major elements between sheep.


Sign in / Sign up

Export Citation Format

Share Document