A study of the composition of Clun Forest ewe's milk. II. Mineral constituents

1966 ◽  
Vol 67 (1) ◽  
pp. 77-80 ◽  
Author(s):  
W. M. Ashton ◽  
I. M. Yousef

1. This paper provides further information on the mineral content of the milk of Clun Forest ewes, particularly those elements not dealt with in a previous paper, namely, magnesium, sodium, potassium, and certain trace elements.2. The average composition was as follows: calcium 0.200, magnesium 0.0147, sodium 0.046, potassium 0.168, phosphorus 0.140 and chlorine 0.076%; copper 0.22, iron 0.77, manganese 0.07 and aluminium 1.7 parts per million. Where possible the results are compared with those obtained by other workers for ewe's and cow's milk.3. Statistical analysis of the data showed that, with the exception of phosphorus, the content of major elements varied significantly during the lactation period. There was also a significant variation in all major elements between sheep.

2001 ◽  
Vol 34 (3) ◽  
pp. 1255
Author(s):  
S. PANILAS ◽  
G. HATZIYANNIS

Multivariate statistical analysis was used on existing geochemical data of the Drama lignite deposit, eastern Macedonia, Greece. Factor analysis with varimax rotation technique was applied to study the distribution of major, trace and rare earth elements in the lignite and 850°C lignitic ash, to find a small set of factors that could explain most of the geochemical variability. The study showed that major elements AI, Na, Κ, contained in the lignite samples, presented high correlation with most of the trace and rare earth elements. In 850°C lignitic ashes major and trace elements present different redistribution. Only Al remained correlated with the trace elements Co, Cr, Rb, Ta, Th, Ti, Sc and rare earths related with inorganic matter in the lignite beds. Trace elements Fe, Mo, U, V, W, and Lu were associated with organic matter of lignite and had also been affected by the depositional environment.


1958 ◽  
Vol 25 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Dawn R. Perrin

1. The composition of the milk of six low-plane and six high-plane ewes has been studied. Definite lactational trends have been observed for all the major constituents.2. For all the ewes the initial colostrum was characterized by very high protein and fat contents and by low lactose content.3. Analyses of the mineral constituents—calcium, magnesium, sodium, potassium, phosphorus, and chloride—are reported covering the whole lactation of twelve sheep. The colostrum of the low-plane animals was higher in total mineral content than that of the high-plane animals.The author wishes to thank Mr L. J. Lambourne for providing the milk samples and Mr J. E. Allen for the spectographic analyses.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sudip Paul ◽  
Md. Sakib Hossen ◽  
E. M. Tanvir ◽  
Rizwana Afroz ◽  
Delwar Hossen ◽  
...  

The study reports on major and trace elements as well as antioxidant properties of honey samples from Bangladesh. Four major cationic elements, seven trace elements, and three heavy metals were determined in the 12 honey samples using atomic absorption spectrophotometer. Nutritional values in these honey samples were further investigated according to their antioxidant properties. The content of major elements was in the range of 62.75–616.58, 579.48–2219.43, 69.42–632.25, and 0.13–1.20 mg/kg for sodium, potassium, magnesium, and calcium, respectively. The trace elements varied in the range of 0.41–28, 0.12–3.54, 1.54–2.85, 0.29–0.59, 0.02–0.35, and 0.01–0.06 mg/kg for iron, zinc, copper, nickel, cobalt, and cadmium, respectively. Among the heavy metals, only lead (0.17–2.19 mg/kg) was detected. The results of antioxidant analysis based on phenolics, flavonoids, ascorbic acid, reducing sugar, and proteins (as nonphenolic antioxidants) revealed that multifloral raw honey samples contain significantly higher levels of reducing agents than monofloral and commercial brand honeys. The study provides a useful insight on the minerals, heavy metals, and antioxidant properties of honey samples commonly consumed in Bangladesh and found to be rich source of antioxidants and minerals. Some samples might pose some risk to the health due to lead contamination.


2019 ◽  
Vol 12 (3) ◽  
pp. 199-212 ◽  
Author(s):  
Elena V. Shabanova ◽  
Ts. Byambasuren ◽  
G. Ochirbat ◽  
Irina E. Vasil'eva ◽  
B. Khuukhenkhuu ◽  
...  

This article focuses on the relationships between major (Si, Al, Mg, Fe, Ca, Na, K, S, P and Ti) and potentially toxic trace (Ag, As, B, Ba, Bi, Co, Cd, Cr, Cu, F, Ge, Mo, Mn, Li, Ni, Pb, Sb, Sn, Sr, Tl, V and Zn) elements in Ulaanbaatar surface soils and also sources of the trace elements in the soils distinguished by the methods of multivariate statistical analysis. Results of exploratory data analysis of 325 Ulaanbaatar soil samples show the accumulation of Ca, S, B, Bi, Cu, Mo, Pb, Sb, Sn, Sr and Zn in urban soils. The major elements were grouped by cluster analysis in tree associations characterizing main soil fractions: sandy P-(K-Na-Si), clayey (Mg-Ti-Fe-Al) and silty (S-Ca). The factor analysis shows that silty fraction is enriched in major elements of both natural and anthropogenic origin. The principal component analysis from 32 variables extracted nine principal components with 82.49% of the cumulative explained variance. The results of cluster and factor analyses well agree and reaffirm the enrichment causes of potentially toxic elements are a coal combustion at thermal power stations (B, Bi, Ca, Mo, S and Sr) and traffic emissions (Cu, Pb, Sn and Zn). Spatial distributions of trace elements in the districts of Ulaanbaatar city were obtained by ordinary kriging. It is illustrated that the different principal components define the various origins and patterns of accumulation of trace elements in soils. The supplementation of data set by the concentration of organic carbon and the species of elements could help to identify the sources of such elements as P, Ni, Al, Fe, Ca, Ba, Bi, Cr, Zn, Sr and Sb in urban soils more completely.


2003 ◽  
Vol 17 (2) ◽  
pp. 85-115 ◽  
Author(s):  
David Thomas

In 1927 a study at King's College, University of London, of the chemical composition of foods was initiated by Dr McCance to assist with diabetic dietary guidance. The study evolved and was then broadened to determine all the important organic and mineral constituents of foods, it was financed by the Medical Research Council and eventually published in 1940. Over the next 51 years subsequent editions reflected changing national dietary habits and food laws as well as advances in analytical procedures. The most recent (5th Edition) published in 1991 has comprehensively analysed 14 different categories of foods and beverages. In order to provide some insight into any variation in the quality of the foods available to us as a nation between 1940 and 1991 it was possible to compare and contrast the mineral content of 27 varieties of vegetable, 17 varieties of fruit, 10 cuts of meat and some milk and cheese products. The results demonstrate that there has been a significant loss of minerals and trace elements in these foods over that period of time. It is suggested that the results of this study cannot be taken in isolation from recent dietary, environmental and disease trends. These trends are briefly mentioned and suggestions are made as to how the deterioration in the micronutrient quality of our food intake may be arrested and reversed.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3412
Author(s):  
Wojciech Koch ◽  
Marcin Czop ◽  
Agnieszka Nawrocka ◽  
Dariusz Wiącek

Food is a major source of minerals for humans. The main objective of this study was to determine the intake level of 10 essential macro- (Na, K, Ca, and Mg) and trace elements (Cu, Zn, Mn, Fe, Cr, and Se) with major food groups among young adults. Dietary intake of elements was evaluated using the 24-h dietary recall technique in combination with F-AAS and ICP-OES methods. A very high intake of sodium and a very low intake of calcium, combined with inappropriate sodium/potassium ratio, may be harmful to the health of the population. Dietary intake of trace elements was within the range of reference values in the subjects, with cereals being the major source of a majority of those elements, while meat (38% for Na), vegetables (25% for K), and milk products (75% for Ca) were the main contributors to the daily dietary intake of macroelements. PCA revealed several visible trends in the datasetAmong men, the intake of Zn, Cr Na and K was significantly correlated with the consumption of meat and vegetables, whereas Mg, Se, Fe and Cu with cereals and water and beverages. Among women, the intake of Mg was significantly correlated with the consumption of meat and vegetables.


2019 ◽  
Vol 70 (3) ◽  
pp. 382 ◽  
Author(s):  
Nidia I. Tobón Velázquez ◽  
Mario Rebolledo Vieyra ◽  
Adina Paytan ◽  
Kyle H. Broach ◽  
Laura M. Hernández Terrones

The aim of the study is to determine the distribution of trace and major elements in the water and in the sediments of the south part of the Bacalar Lagoon and to identify the sources of the trace elements and their changes over time. The western part of the lagoon water column is characterised by high concentrations of Ca2+, HCO3– and Sr2+, derived from groundwater input. In contrast, the eastern part of the lagoon is characterised by high concentrations of Mg2+, Na+ and Cl–. The lagoon is not affected by present-day seawater intrusion. Water column and sediment geochemical analyses performed in Bacalar Lagoon show clear spatial distribution of different parameters. The saturation index of the water column indicates three main groups: (1) a zone oversaturated with regard to aragonite, calcite and dolomite; (2) an undersaturated area where all three minerals are dissolving; and (3) an area with calcite equilibrium and undersaturation with regard to the other minerals. Herein we present the first measurements of trace element (Ba2+, Mn2+, K+, Ni2+, Zn2+) concentrations in carbonates obtained from sediments in Bacalar Lagoon. In order to evaluate whether the trace elements are derived from natural or anthropogenic sources, four pollution indices were calculated. The results confirmed that Bacalar Lagoon sediments are not contaminated with Ni2+, K+, Mn2+ and Ba2+, and that the Zn2+ seems to have a predominantly anthropogenic origin.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


2016 ◽  
Vol 13 (4) ◽  
pp. 734-744
Author(s):  
Baghdad Science Journal

The current study was conductedas a pot experiment to determine the effect of soil texture on biological nitrogen fixation (BNF) of six most efficient local isolates, specified, of Bradyrhizobium. Cowpea (Vignaunguiculata L.), as a legume host crop, was used as a host crop and 15N dilution analysis was used for accurate determination of the amount of N biologically fixed under experimental parameters specified. Soils used are clay loam, sandy clay loam and sandy loam. Biological Nitrogen Fixation (BNF), in different soil textural classes, was as in the following order: medium texture soil > heavy texture soil > light textured soil. Statistical analysis showed that there is a significant variation in BNF % among six Iraqi isolates in the three soil textural classes. There is a significant variation in the number of the nodules of the six Isolates in one soil texture. However, nodules number does not agree with the BNF% in the same soil for any isolates. Statistical analysis of the data showed that there were significant differences in plant dry weight among the soil textural classes all over local isolates used in this study. Data also showed that there were significant differences in dry weight under different isolates.


Sign in / Sign up

Export Citation Format

Share Document