Class II post-peak behaviour of cementitious material in uniaxial compression

Author(s):  
Hongyu Wang ◽  
Arcady Dyskin ◽  
Phil Dight ◽  
Elena Paternak

<p>An experimental study of post-peak behaviour of rock models in uniaxial compression under different controlling methods is presented. A series of mortar samples with different compositions are firstly tested into post-peak stages using the axial strain control. In axial strain control, all types of mortar samples including pure cement samples have unavoidable sudden failure beyond the peak stress at different stages, and therefore only limited post-peak stress-strain curves can be captured. In order to capture the post-peak stress-strain curves beyond the sudden failure, a failure control method based on controlling the rate of lateral strain is proposed in this study. Using this method, post-peak stress-strain curves with positive modulus could be obtained for class II behaviour. The failure modes of the samples tested in both axial strain control and failure control show similarity. Also, the failure-controlled experiments indicate that despite the unstable fracture growth in the samples being considerable after peak stress, it may not lead to the uncontrolled sudden failure of the whole sample but could produce a class II stress-strain curve.</p>

2014 ◽  
Vol 919-921 ◽  
pp. 29-34 ◽  
Author(s):  
Jian Chin Lim ◽  
Togay Ozbakkloglu

It is well established that lateral confinement of concrete enhances its axial strength and deformability. It is often assumed that, at a same level of confining pressure, the axial compressive stress and strain of fiber reinforced polymer (FRP)-confined concrete at a given lateral strain are the same as those in concrete actively confined concrete. To assess the validity of this assumption, an experimental program relating both types of confinement systems was conducted. 25 FRP-confined and actively confined high-strength concrete (HSC) specimens cast from a same batch of concrete were tested under axial compression. The axial stress-strain and lateral strain-axial strain curves obtained from the two different confinement systems were assessed. The results indicate that, at a given axial strain, lateral strains of actively confined and FRP-confined concretes correspond, when they are subjected to the same lateral confining pressure. However, it is observed that, at these points of intersections on axial strain-lateral strain curves, FRP-confined concrete exhibits a lower axial stress than the actively confined concrete, indicating that the aforementioned assumption is not accurate. The test results indicate that the difference in the axial stresses of FRP-confined and actively confined HSC becomes more significant with an increase in the level of confining pressure.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5348
Author(s):  
Rui Tang ◽  
Zhenpeng Yu ◽  
Guoqing Liu ◽  
Furong Li ◽  
Wenbin Tang

To investigate the compressive dynamic properties of hydraulic asphalt concrete under various temperatures, four temperatures and four strain rates have been set to perform the uniaxial compression experiments using hydraulic servo machine in this paper. The influence of temperature and strain rate on the failure modes, stress-strain curves and mechanical characteristic parameters of hydraulic asphalt concrete is analyzed and the results reveal that the failure modes and stress-strain curves have significant temperature effect. When the temperature is between −20 °C and 0 °C, the failure mode is dominated by brittle failure of asphalt binder, and hydraulic asphalt concrete shows obvious strain softening. With the addition of temperature, the failure modes of specimens are transferred from brittle failure to ductile failure since the asphalt changes from elastic-brittleness to viscoelasticity. Influenced by temperature effect, the compressive stress-strain curves of hydraulic asphalt concrete show strain hardening while the peak stress of hydraulic asphalt concrete is obviously decreased, and the variation coefficient of peak stress has a power relation with temperature. With successive increases in strain rate, the stress-strain curves of hydraulic asphalt concrete gradually are transferred from strain hardening to strain softening. The peak stress and stiffness modulus of specimens under compression gradually increase, and the dynamic increase factor of peak stress is linearly related with the logarithm value of strain rate after dimensionless treatment. In terms of the quantitative analysis of the experimental data, two relationship models of the coupling effect between temperature and strain rate are proposed. The proposed models have good applicability to the quantitative analysis of the experimental results in the manuscript. This paper offers important insights into the application and development of hydraulic asphalt concrete in hydraulic engineering.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3638
Author(s):  
Kunting Miao ◽  
Yang Wei ◽  
Xi Zhang ◽  
Kaiqi Zheng ◽  
Fenghui Dong

A new structure termed “concrete-filled FRP-grooved steel composite tube (CFGCT) column” is proposed, which is composed of a stress-released steel tube (i.e., grooved steel tube), fiber-reinforced polymer (FRP) and concrete. Axial load tests were carried out on twenty-four specimens to investigate the constraint effect of this structure. Three main experimental variables were considered: the steel tube thickness, the FRP type, and the FRP layer. The failure modes, stress-strain relationships and the effect of the main experimental variables were discussed. The stress-strain curves of this new structure are composed of an initial linear part, a nonlinear transition part, a strengthening part and a residual part. The test results demonstrate that the bearing capacity of the structure was improved, and that the mechanical mechanism of the structure was simplified due to the stress-released grooves. Based on the test results and previous studies, formulas for calculating the ultimate stress (fcu), ultimate strain (εcu), peak stress (fcc) and peak strain (εcc) were proposed. In addition, models for predicting the stress-strain curves of CFGCT columns were put forward, and the models could precisely simulate the stress-strain curve of this new composite structure. Hence, this study indicates that a structure composed of FRP and stress-released steel tube can effectively constrain concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian-jun Ren ◽  
Shan-Yang Wei ◽  
Shi-Hai Shu ◽  
Wei-Dong Luo

To study the lateral deformation characteristics of coal under different confining pressures, coal compression experiments with confining pressures of 0 MPa, 3 MPa, 5 MPa, and 7 MPa were conducted under the same loading rate by using the TAW-2000 electrohydraulic servo rock mechanics experimental machine. The results of the study showed the following: at the initial stage of loading, the lateral strain of coal was about 12.22%–46.9% of the axial strain at the elastic deformation stage and 41.18%–64.96% of the axial strain at the inelastic deformation to peak stress stage. Compared with the experiment under 0 MPa confining pressure, the growth rate of the lateral strain of the coal under 3 MPa, 5 MPa, and 7 MPa confining pressures was much smaller than that of the corresponding axial strain. When the coal was damaged under different confining pressures, the lateral strain was maintained at about 0.6 × 10−2. Based on the field verification, we proposed that the lateral strain during the coal failure and the nonlinear region of the lateral axis ratio changing with time can be used as potential parameters for predicting the coal failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bing Li ◽  
Lianying Zhang ◽  
Hai Pu ◽  
Xianbiao Mao ◽  
Peitao Qiu ◽  
...  

In order to study the short-term creep deformation of high-strength concrete with varying fly ash replacement ratios, concrete samples with 0, 20, 35, and 50 wt% fly ash were tested using an electrohydraulic servocontrolled creep testing system and characterized using scanning electron microscopy after fracturing. Three different creep deformation behaviors were observed over time under different stress levels, namely, decelerating, isokinetic, and accelerating creep, where the creep rate increased with increasing stress. Failure of the samples occurred once isokinetic creep was achieved. The peak stress of the concrete samples exhibited a parabolic trend with increasing fly ash content, where the peak stress in the 0, 20, 35, and 50 wt% samples during short-term gradation loading creep testing was 13.08%, 7.94%, 15.14%, and 14.50% lower, respectively, than the peak stress measured in conventional uniaxial compression testing. The accumulated creep of the samples was reported and can be used as a reference for future studies on the long-term creep characteristics of concrete. The macro- and microscopic failure modes of the fly ash concrete during short-term gradation loading creep under uniaxial compression were brittle cleavage fracturing.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4291
Author(s):  
Huailiang Wang ◽  
Lang Wang ◽  
Lei Li ◽  
Baoquan Cheng ◽  
Yonggang Zhang ◽  
...  

This study aimed to research the whole stress–strain curves of coral Fly Ash-Slag Alkali-Activated Concrete (CAAC) in different strength grades. Fly ash-slag alkali-activated concrete was used as cementing materials to produce coral aggregate concrete. A monotonic loading test was conducted on the prismatic specimens to obtain elastic modulus (Ec), Poisson’s ratio (μ) and the constitutive relationship of CAAC under uniaxial compression. When the strain of CAAC reached the maximum value, the specimen was split and damaged rapidly. As the strength grade increased, the ratio of residual stress (σri) to peak stress (σ0i) decreased in the range of 0.17–0.28. The Ec of CAAC increased gradually, and μ increased to the peak value and then decreased. According to the test results, the constitutive equation of CAAC can be expressed by piecewise expression, which can better reflect all the experimental characteristics. It was also found that CAAC has many similar characteristics with coral concrete and lightweight aggregate concrete. To improve the strength and toughness of CAAC, some fibers, such as organic fiber, can be added to expand the application of CAAC in engineering projects.


2014 ◽  
Vol 580-583 ◽  
pp. 610-613 ◽  
Author(s):  
Lei Wang ◽  
Jiang Yu ◽  
Xue Hua

The uniaxial compression test on pre-existing persistent jointed rock cylindrical standard specimen made by high stiffness servo control testing machine, systematic researched the relationship between jointed rock post-peak stress-strain curve, the destroy form of rock masses with dip angles of persistent joints. And the results reveal that: (1) The post-peak stress - strain curves of specimens with joint inclination angle of 15°and complete specimens are basically the same, but the difference of post-peak stress - strain curves of specimens with the joint inclination angle from 30°to 60°and complete specimens is vary greatly; (2) The post-peak failure modes of specimen change with different joint inclination. The research result can reflect mechanics and deformation and damage characteristics under uniaxial compressive loading in the phase of post-peak of rock masses with different dip angle pre-existing persistent joints.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Qiu ◽  
Jinhong Li ◽  
Huangbin Jiang ◽  
Hongyuan Fu ◽  
Shun Yang

To study the mechanical characteristics of the disintegrated carbonaceous mudstone (DCM), consolidated drained triaxial tests were conducted on the DCM with three degrees of compaction (i.e., 90%, 93%, and 96%). Then, the nonlinear constitutive model suitable for the DCM was established based on test results using a logarithmic function. The stress-strain characteristics of the DCM were analyzed. The results revealed that the axial strain of the DCM was positively correlated with the deviatoric stress and lateral strain. The slopes of deviatoric stress-axial strain curves decreased with the increase of axial strain and so did the slopes of the axial strain-volumetric strain curves. The strength of the DCM increased with the increase of the confining pressure and the degree of compaction. In addition, the axial strain induced by dilatancy was also positively correlated with the degree of compaction and the confining pressure. Furthermore, under triaxial loading conditions, the relationship between the stress and strain of the DCM can be expressed by a logarithmic function; based on this, a nonlinear constitutive model with ten material parameters was derived. In addition, the results of numerical tests using the model showed similar stress-strain characteristics of the DCM comparing with the triaxial tests. Hence, it indicated that the nonlinear constitutive model based on the logarithmic function can reflect the nonlinear stress-strain characteristics of the DCM.


Sign in / Sign up

Export Citation Format

Share Document