Intra-soil milling for long-term efficient land use prospects 

Author(s):  
Saglara Mandzhieva ◽  
Vladimir Chernenko ◽  
Valery Kalinitchenko ◽  
Alexey Glinushkin ◽  
Alexey Zavalin ◽  
...  

<p>Current land-use policy needs for innovative soil processing technologies. We carried out a long-term field experiment on the Kastanozem in following options: moldboard plowing to a depth of 22 cm; chiselling to a depth of 35 cm; three-tier PTN–40 plowing to a depth of 40–45 cm; PMS–70 intra-soil milling of the 20–45 cm layer. Moldboard, chisel and three-tier plowing does not improve soil aggregate system. 20–45 cm soil layer milling by PMS–70 provides the formation of the 1–3 mm aggregates. 30–40 years after PMS–70 processing, the soil profile structure remained fine aggregate. Soil organic matter and dissolved organic matter content, as well as the soil productivity, were higher after PMS–70. New intra-soil milling machine PMS–260 was developed. The moldboard plowing did not change the natural soil profile vertical morphological differentiation. The soil loosening effect was short-term after soil chiselling. After the three-tier PTN-40 plowing, a large part of humus horizon material strews down the soil profile between the chaotically spread large structural blocks of illuvial and transitional horizons. After PMS–70 processing, the content of 1–3 mm size aggregate particle fraction in the illuvial horizon was triple compared to the three-tier PTN–40 plowing. The soil desalination was intensive after PMS–70. The absorbed Na<sup>+</sup> content in solonetz was about 18–20% of soil cation exchange capacity (CEC) in the moldboard option. The same was after the chiselling. The CEC Na<sup>+</sup> content was of 14–16% after the PTN–40. The CEC Na<sup>+</sup> content was of 10–12% after the PMS–70. The SOM content in the 0­–20 cm soil layer was 2.0%, in the 20-40 cm layer of 1.3%; the DOM content was 0.03% and 0.02% respectively in moldboard plowing option. The SOM and DOM content increased slightly in a period 3–4 years after chiselling. The SOM content was 2.2% in the 0­–20 cm, and 1.4% in the 20–40 cm; the DOM content was 0.04% and 0.03% respectively after the PTN–40. The SOM content increased to 3.3% in the 0–20 cm soil layer, and to 2.1% in the 20–40 cm layer; the DOM content increase was 0.05% and 0.04% respectively after the PMS–70. In the moldboard option, the rhizosphere developed only in the upper soil layer of 0–20 cm. The rhizosphere spreads through the soil crevices after chilling. The conditions of rhizosphere development were better in the local comfort zones of the soil profile after three-tier PTN–40 plowing. The rhizosphere developed well and uniformly both in the upper 0–20 cm and in the 20-45 cm layer after intra-soil milling by PMS–70. Improved plant growing conditions provide higher plant resistivity to pathogens.  The technology life cycle profitability: moldboard 21.5%, chiseling 6.9%, three-tier 15.6%, intra-soil milling 45.6%. The new design of intra-soil milling machine provides five times less traction resistance; 80% increased reliability, halving energy costs. Intra-soil milling provides long-term land-use prospects.</p><p>The research was supported by the RFBR, project no. 18-29-25071, and by the President of the Russian Federation, no. MK-2244.2020.5.</p>

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1302
Author(s):  
Valery Petrovich Kalinitchenko ◽  
Alexey Pavlovich Glinushkin ◽  
Vladimir Konstantinovich Sharshak ◽  
Evgene Panteleimonovich Ladan ◽  
Tatiana Mikhailovna Minkina ◽  
...  

The long-term field experiment on the Kastanozem showed that the standard moldboard plowing to a depth of 22 cm (control), chiseling to a depth of 35 cm, and three-tier plowing (machine type PTN–40) to a depth of 45 cm was incapable of providing a stable soil structure and aggregate system. The transcendental Biogeosystem Technique (BGT*) methodology for intra-soil milling of the 20–45 cm layer and the intra-soil milling PMS–70 machine were developed. The PMS–70 soil processing provided the content of 1–3 mm sized aggregate particle fraction in the illuvial horizon of about 50 to 60%, which was 3-fold higher compared to standard plowing systems. Soil bulk density reduced in the layer 20–40 cm to 1.35 t m−3 compared to 1.51 t m−3 in the control option. In the control, the rhizosphere developed only in the soil upper layer. There were 1.3 roots per cm−2 in 0–20 cm, and 0.2 roots per cm−2 in 20–40 cm. The rhizosphere spreads only through the soil crevices after chilling. After three-tier plowing (PTN–40), the rhizosphere developed better in the local comfort zones of the soil profile between soil blocks impermeable for roots. After intra-soil milling PMS–70, the rhizosphere developed uniformly in the whole soil profile: 2.2 roots per cm−2 in 0–20 cm; 1.7 roots per cm−2 in 20–40 cm. Matric water potential was higher, soil salinization was lower, and the pH was close to neutral. Soil organic matter (SOM) content increased to 3.3% in 0–20 cm and 2.1% in 20–40 cm compared to the control (2.0% in the 0–20 cm soil layer and 1.3% in the 20–40 cm layer). The spring barley yield was 53% higher compared to the control. The technology life cycle profitability was moldboard 21.5%, chiseling 6.9%, three-tier 15.6%, and intra-soil milling 45.6%. The new design of the intra-soil milling machine provides five times less traction resistance and 80% increased reliability, halving energy costs.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


2013 ◽  
Vol 10 (2) ◽  
pp. 1193-1207 ◽  
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years. Lab incubations of sediment and overlying water were conducted at 4 temperatures (4 °C, 15 °C, 25 °C, and 35 °C) for 48 h. Results indicated: (1) warming significantly increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions, (2) warming consistently increased SRP fluxes from sediments to overlying water across land use, (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at some urban sites likely due to sulfate reduction, and (4) nitrate fluxes showed an increasing trend with temperature at some forest and urban sites but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase mean sediment fluxes of SRP, DOC and nitrate-N across streams by 0.27–1.37 g m−2 yr−1, 0.03–0.14 kg m−2 yr−1, and 0.001–0.06 kg m−2 yr−1. Understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting shifts in carbon and nutrient loads in response to interactive impacts of climate and land use change.


Silicon ◽  
2020 ◽  
Author(s):  
Barbara von der Lühe ◽  
Laura Pauli ◽  
Britta Greenshields ◽  
Harold J. Hughes ◽  
Aiyen Tjoa ◽  
...  

Abstract The effects of land use and fire on ecosystem silicon (Si) cycling has been largely disregarded so far. We investigated the impacts of land use and fire on Si release from topsoils and litter of lowland rainforest and oil-palm plantations in Jambi Province, Indonesia. Lower concentrations of Si in amorphous silica (ASi) were found in oil-palm plantation topsoils (2.8 ± 0.7 mg g− 1) compared to rainforest (3.5 ± 0.8 mg g− 1). Higher total Si concentrations were detected in litter from oil-palm frond piles (22.8 ± 4.6 mg g− 1) compared to rainforest litter (12.7 ± 2.2 mg g− 1). To test the impact of fire, materials were burned at 300 °C and 500 °C and were shaken with untreated samples in simulated rainwater for 28 h. Untreated oil-palm topsoils showed a significantly lower Si release (p≤ 0.05) compared to rainforest. The fire treatments resulted in an increased Si release into simulated rainwater. Si release from oil-palm topsoils and litter increased by a factor of 6 and 9 (500 °C), respectively, and Si release from rainforest topsoils and litter by a factor of 3 and 9 (500 °C). Differences between land use were related to initial ASi and litter Si concentrations, and to losses of soil organic matter during burning. We conclude that transformation of rainforest into oil palm plantations could be an important and immediate Si source after a fire event but may indirectly lead to a decrease in the long-term Si availability to plants.


2020 ◽  
Author(s):  
Dedy Antony ◽  
Jo Clark ◽  
Chris Collins ◽  
Tom Sizmur

<p>Soils are the largest terrestrial pool of organic carbon and it is now known that as much as 50% of soil organic carbon (SOC) can be stored below 30 cm. Therefore, knowledge of the mechanisms by which soil organic carbon is stabilised at depth and how land use affects this is important.</p><p>This study aimed to characterise topsoil and subsoil SOC and other soil properties under different land uses to determine the SOC stabilisation mechanisms and the degree to which SOC is vulnerable to decomposition. Samples were collected under three different land uses: arable, grassland and deciduous woodland on a silty-clay loam soil and analysed for TOC, pH, C/N ratio and texture down the first one metre of the soil profile. Soil organic matter (SOM) physical fractionation and the extent of fresh mineral surfaces were also analysed to elucidate SOM stabilisation processes.</p><p>Results showed that soil texture was similar among land uses and tended to become more fine down the soil profile, but pH did not significantly change with soil depth. Total C, total N and C/N ratio decreased down the soil profile and were affected by land use in the order woodland > grassland > arable. SOM fractionation revealed that the free particulate organic matter (fPOM) fraction was significantly greater in both the topsoil and subsoil under woodland than under grassland or arable. The mineral associated OC (MinOC) fraction was proportionally greater in the subsoil compared to topsoil under all land uses: arable > grassland > woodland. Clay, Fe and Mn availability play a significant role (R<sup>2</sup>=0.87) in organic carbon storage in the top 1 m of the soil profile.</p><p>It is evidently clear from the findings that land use change has a significant effect on the dynamics of the SOC pool at depth, related to litter inputs to the system.</p>


2020 ◽  
Author(s):  
Valery Kalinichenko ◽  
Alexey Glinushkin ◽  
Peter Mukovoz ◽  
Abdulmalik Batukaev ◽  
Tatiana Minkina ◽  
...  

<p>Forests and artificial forest lines at the climax stage are the source of greenhouse gases. Artificial forests, forest lines, recreational forest plantations can help to reduce the greenhouse emission, increase oxygen production, enlarge the soil carbon biological capacity, and improve silviculture land protective and recreational function. </p><p>Artificial forest systems on the Chernozem and Kastanozem have the obvious signs of the climatic suppression. The adverse influence of climate on artificial forests via summer droughts is aggravated by poor soil conditions for silviculture. The lifespan of artificial forests reduces from typical for most tree species of 200-800 years to short 30-60 years. In dry steppe, the habitus and dimensions of trees are worse in comparison to natural analogue in good conditions of development. Now the artificial forests in semiarid and arid areas do not suit the task of carbon sequestration, oxygen producing and climate correction. It aggravates the current uncertainty of biosphere. Standard outdated agronomy and soil reclamation technologies fail to prepare the soil for the long-term successful forest growth. The known silviculture technology fails to provide the forest soil watering, because standard irrigation is linked to enormous water consumption, soil and landscape degradation.</p><p>We propose the Biogeosystem Technique (BGT*) for the semiarid and arid forestry improvement. The BGT* is a transcendental (non-imitating natural processes) approach to improve soil management including pre-planting soil processing, soil watering and fertigation (chemisation) for proper long-term artificial forestry. The BGT* provide regulation of the fluxes of energy, matter (including organic carbon), water and higher biological productivity of artificial forestry: intra-soil machining provides productive fine aggregate system of the 20-50 cm soil layer for root development; waste intra-soil dispersed recycling while intra-soil machining of the 20-50 cm soil layer provides better soil reclamation, remediation, plant nutrition, macro- and micro elements (including heavy metals), matter organic matter  transfer and turnover in the soil continuum; intra-soil pulse continuous-discrete plant watering reduces the transpiration rate, water consumption of trees is less for 5-20 times, and at the same time provides increased biological productivity of forest plantation, reversible biological sequestration of carbon. The BGT* methods reduce the loss of organic matter from soil into vadoze zone and atmosphere; reduce greenhouse emission from soil and forest, and improve the agro-ecological environment. Apply of the BGT* methods to the dry steppe Chernozem and Kastanozem artificial forest systems will increase the artificial forests oxygen and biomas production, prolong forest lifespan, improve the silviculture land protection function, and mitigate climate change.</p><p>BGT* robotic systems will be of low energy and material consumption, will improve forestry, agriculture, reduce the biosphere and climate uncertainty, insure the recreational appearance of forest, make the life attractive.</p><p>Objectives of the study: to show the long-term results of Russian steppe terrain silviculture system on Chernozem and Kastanozem; using BGT* methodology, to justify intra-soil 20-50 cm milling, waste intra-soil dispersed recycling while intra-soil 20-50 cm machining, intra-soil pulse continuous-discrete plant watering to provide higher artificial forest biological productivity, reversible carbon biological sequestration, soil fertility, the human and soil health.</p>


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Linlin Si ◽  
Wenhai Mi ◽  
Yan Sun ◽  
Wanghai Tao ◽  
Jihong Zhang ◽  
...  

Land use change could significantly affect soil organic carbon (SOC) and other soil chemical properties. However, the responses of soil labile C fractions at different soil depths to land-use change are not still clear. The aim of this study was to investigate the effect of paddy field conversion on woodlands or corn fields on total soil organic C (TOC) and its labile C fractions including particulate organic C (POC), microbial biomass C (MBC), and potassium permanganate-oxidizable C (KMnO4–C) along a 0–100 cm soil profile. Our results indicate that soil TOC concentrations increased by 3.88 g kg−1 and 3.47 g kg−1 in the 0–5 cm soil layer and 5.33 g kg−1 and 4.68 g kg−1 in the 5–20 cm soil layer during 13 years after the conversion from paddy fields to woodlands and corn fields, respectively. In the 20–40 cm soil layer, the woodlands had the highest TOC concentration (12.3 g kg−1), which was 5.13 g kg−1 and 3.5 g kg−1 higher than that of the paddy and corn fields, respectively. The increase in TOC was probably due to the absence of soil disturbance and greater root residue input into the woodland soil. In corn fields, pig manure addition contributed to the increase in soil organic C concentrations. In addition, the proportion of soil KMnO4–C increased after conversion from paddy fields to woodlands or corn fields in the 0–40 cm soil layer, ranging from 39.9–56.6% for the woodlands and 24.6–32.9% for the corn fields. The soil POC content was significantly higher in woodland and corn field soils than in paddy field soils at lower soil depths (5–40 cm). However, there were no differences in MBC contents in the whole soil profile between the woodlands and paddy fields. The KMnO4–C and MBC was the most important factor affecting the CMI values through the whole 0–100 cm soil profile. Overall, converting paddy fields to woodlands or corn fields increased the TOC and labile C fractions in the 0–40 cm soil layer. Future studies should focus on the response of the deeper soil C pool to land-use change.


2000 ◽  
Vol 51 (6) ◽  
pp. 737 ◽  
Author(s):  
M. R. McCaskill ◽  
J. W. D. Cayley

A nutrient audit was conducted on a long-term grazed fertiliser experiment at Hamilton in south-western Victoria to determine the fate of applied phosphorus (P) and sulfur (S). Single superphosphate had been applied at rates averaging between 1 and 33 kg P/ha.year since the start of the experiment in 1977. Soil samples were taken in 1994 by coring to a depth of 80 cm, and analysed for total soil nutrient concentration. Most (80%) applied P was in the top 43 cm of the soil profile. A further 6.5% had been transferred to sheep camp areas and 6.5% had been exported as product. It was estimated that <0.4% of applied P left the site in surface water movement. Unaccounted P (6.6%) was probably in the soil, but could not be detected because of the relatively wide confidence margin for total soil P. Only 31% of applied S was detected in the top 43 cm, 3.6% had been transferred to sheep camps, and 4.9% exported in product. Unaccounted S (60%) had probably moved deeper into the soil where it could not be detected from background levels of total soil S. Bulk density in the 0–5-cm layer increased by 1% for each additional ewe per ha, but decreased by up to 0.4% for each kg/ha.year of P fertiliser. Soil nitrogen (N) accumulated at 46 kg N/ha.year at the highest P application rate.Differences in total potassium (K) between low and high fertility treatments indicated that 20 kg K/ha.year had moved out of the 5–19-cm soil layer of the high fertility treatment. This was attributed to competition for exchange sites from calcium (Ca) in the superphosphate. It was concluded that fertilisers with a higher P : S ratio and a lower Ca content than superphosphate are more appropriate for the basalt-derived duplex soils because they would reduce problems associated with displacement of K in the soil profile.


2016 ◽  
Vol 30 (3) ◽  
pp. 269-274 ◽  
Author(s):  
József Tibor Aranyos ◽  
Attila Tomócsik ◽  
Marianna Makádi ◽  
József Mészáros ◽  
Lajos Blaskó

Abstract Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha−1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.


Sign in / Sign up

Export Citation Format

Share Document