Predicting potential areas for the formation of Co-rich ferromanganese crusts in the Canary Islands Seamount Province using multi-criteria GIS analysis

Author(s):  
Ana Lobato ◽  
Egidio Marino ◽  
Javier González ◽  
Teresa Medialdea ◽  
Luis Somoza

<p>Marine ferromanganese crusts are metal-rich chemical sediments showing an increasing economic interest as potential mineral resources for strategic and critical metals. Formation of Fe-Mn crusts is linked to a series of different factors that favor or limit their genesis on the seabed. The objective of this work is the search of areas for potential formation of these deposits, using data obtained in the Canary Islands Seamount Province. The study has been carried out based on multi-criteria analysis, using a Geographic Information System (ArcGis 10.5, Spatial Analysis and Statistical tools). For this purpose, it has been created a cartographic model, which considers data related to depth, seabed substrate nature and age, slope and exposure to marine bottom currents. This model has been applied to non-sampled areas, contrasting them with data derived from the analysis of samples taken in different oceanographic surveys, in order to establish the correct conclusions. This work has been carried out using bathymetric and geological data shared by the Geological Survey of Spain (IGME) with the MINDeSEA [1] and EMODnet-Geology [2] European projects.</p><p>[1] This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p><p>[2] EMODNET-Geology project (EASME/EMFF/2018/1.3.1.8-Lot 1/SI2.811048).</p>

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 439 ◽  
Author(s):  
Egidio Marino ◽  
Francisco Javier González ◽  
Thomas Kuhn ◽  
Pedro Madureira ◽  
Anna V. Wegorzewski ◽  
...  

Four pure hydrogenetic, mixed hydrogenetic-diagenetic and hydrogenetic-hydrothermal Fe-Mn Crusts from the Canary Islands Seamount Province have been studied by Micro X-Ray Diffraction, Raman and Fourier-transform infrared spectroscopy together with high resolution Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry in order to find the correlation of mineralogy and geochemistry with the three genetic processes and their influence in the metal recovery rate using an hydrometallurgical method. The main mineralogy and geochemistry affect the contents of the different critical metals, diagenetic influenced crusts show high Ni and Cu (up to 6 and 2 wt. %, respectively) (and less Co and REY) enriched in very bright laminae. Hydrogenetic crusts on the contrary show High Co and REY (up to 1 and 0.5 wt. %) with also high contents of Ni, Mo and V (average 2500, 600 and 1300 μg/g). Finally, the hydrothermal microlayers from crust 107-11H show their enrichment in Fe (up to 50 wt. %) and depletion in almost all the critical elements. One hydrometallurgical method has been used in Canary Islands Seamount Province crusts in order to quantify the recovery rate of valuable elements in all the studied crusts except the 107-11H, whose hydrothermal critical metals’ poor lamina were too thin to separate from the whole crust. Digestion treatment with hydrochloric acid and ethanol show a high recovery rate for Mn (between 75% and 81%) with respect to Fe (49% to 58%). The total recovery rate on valuable elements (Co, Ni, Cu, V, Mo and rare earth elements plus yttrium (REY)) for the studied crusts range between 67 and 92% with the best results for Co, Ni and V (up to 80%). The genetic process and the associated mineralogy seem to influence the recovery rate. Mixed diagenetic/hydrogenetic crust show the lower recovery rate for Mn (75%) and Ni (52.5%) both enriched in diagenetic minerals (respectively up to 40 wt. % and up to 6 wt. %). On the other hand, the presence of high contents of undigested Fe minerals (i.e., Mn-feroxyhyte) in hydrogenetic crusts give back low recovery rate for Co (63%) and Mo (42%). Finally, REY as by-product elements, are enriched in the hydrometallurgical solution with a recovery rate of 70–90% for all the studied crusts.


2021 ◽  
Author(s):  
Egidio Marino ◽  
Francisco Javier González ◽  
Teresa Medialdea ◽  
Luis Somoza ◽  
Pedro Ferreira ◽  
...  

<p>Bulk mineralogy and geochemistry data of Fe-Mn crusts from seamounts of the Macaronesia region (Canary Islands and Madeira and Azores archipelagos) compiled for the MINDeSEA Database, have been analyzed using statistical tools and related with their location and sampling depth. <br>Results show that the predominant mineralogy is represented by hydrogenetic Fe-vernadite and goethite, with minor abundance of other Mn-oxides such as buserite, asbolane and todorokite in crusts influenced by early diagenesis. Bulk geochemistry is dominated by Fe and Mn (ranging from 7 to 29 wt. %) with low aluminum-silicate elements (10 wt. % in average) and with significant average contents of several strategic and critical metals like Co, Ni, V, Mo, Te and especially REYs (4700, 2300, 1000, 400, 50 and 2500 µg/g respectively).<br>Variation of REYs and energy critical element (Co, Mn and Te) contents as a function of water depth and mineralogy are clearly evident in this study. Geochemical and statistical studies (Pearson correlation and factorial analysis with Varimax) reveal that Fe-Mn crusts recovered at water depths just below the oxygen minimum zone (that in this area is located between 300 and 1000 m) at Tropic, Tore, Unicorn and Bimbache seamounts, show an enrichment of all REYs and especially LREEs (Ce is the most enriched element with up to 2900 µg/g). On the other hand, the crusts recollected from the deepest seamounts: Drago, Gaire and MTR (up to 4900 m water depth) show a slightly depletion in all the REYs, especially La and Ce (300 and 1800 µg/g in average respectively). A similar behavior can also be observed for the other energy critical elements where enrichment or depletion is clearly linked to water depth. Additionally, there is a correlation of REY abundance with the mineralogy.  High-resolution studies show that REY are concentrated up to an order of magnitude lower in the diagenetic Mn oxide minerals than in the hydrogenetic phases, possibly due to their high growth rates that don’t allow the concentration of these elements. This work is part of the investigation related to the metallogenetic models for marine minerals developed in the Geo-ERA MINDeSEA<sup>1</sup> European project.</p><p>[1] This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166</p>


2021 ◽  
Author(s):  
Ranadeep Sarkar ◽  
Jens Pomoell ◽  
Eleanna Asvestari ◽  
Emilia Kilpua ◽  
Marilena Mierla ◽  
...  

<p>Coronal mass ejections (CMEs), the most violent eruptive phenomena occurring in the heliosphere, erupt in the form of gigantic clouds of magnetized plasma from the Sun and can reach Earth within several hours to days. If the magnetic field inside an Earth-directed CME or its associated sheath region has a southward directed component (Bz), then it interacts stronger with the Earth’s magnetosphere, leading to severe geomagnetic storms. Therefore, it is crucial to predict the magnitude and orientation of Bz inside an Earth impacting interplanetary CME (ICME) in order to forecast the intensity of the resulting geomagnetic storms. However, due to lack of realistic inputs and the complexity of the Sun-Earth system in a time-dependent heliospheric context, it is very difficult to perform a reliable forecast of Bz at 1 AU.  </p><p>In this work, we use recently developed observational techniques to constrain the kinematic and magnetic properties of CME flux ropes. Using those observational properties as realistic inputs, we construct an analytical force free flux rope model to mimic the magnetic structure of a CME and simulate its evolution from Sun to Earth using the “European heliospheric forecasting information asset” (EUHFORIA). In order to validate our tool, we simulate an Earth-directed CME event on 2013 April 11 and compare the simulation results with the in-situ observations at 1 AU. Further, we assess the performance of EUHFORIA in forecasting of Bz, using different flux rope models like spheromak and torus.  The results obtained from this study help to improve our understanding to build the steppingstones towards the forecasting of Bz in near real time.</p><p>This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870405 (EUHFORIA 2.0).</p>


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 14
Author(s):  
Laura Pérez ◽  
Juan Espeche ◽  
Tatiana Loureiro ◽  
Aleksandar Kavgić

DRIvE (Demand Response Integration Technologies) is a research and innovation project funded under the European Union’s Horizon 2020 Framework Program, whose main objective is unlocking the demand response potential in the distribution grid. DRIvE presented how the use of digital twins de-risks the implementation of demand response applications at the “Flexibility 2.0: Demand response and self-consumption based on the prosumer of Europe’s low carbon future” workshop within the conference “Sustainable Places 2020”. This workshop was organized to cluster and foster knowledge transfer between several EU projects, each developing innovative solutions within the field of demand response, energy flexibility, and optimized synergies between actors of the built environment and the power grid.


2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Ioannis A. Daglis ◽  
Afroditi Nasi ◽  
Constantinos Papadimitriou ◽  
Marina Georgiou

<p>Radial diffusion has been established as one of the most important mechanisms contributing the acceleration and loss of relativistic electrons in the outer radiation belt. Over the past few years efforts have been devoted to provide empirical relationships of radial diffusion coefficients (D<sub>LL</sub>) for radiation belt simulations yet several studies have suggested that the difference between the various models can be orders of magnitude different at high levels of geomagnetic activity as the observed D<sub>LL</sub> have been shown to be highly event-specific. In the frame of SafeSpace project we have used 12 years (2009 – 2020) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of calculated D<sub>LL</sub>. In this work we present the first statistics on the evolution of D<sub>LL </sub>during the various phases of Solar cycle 24 with respect to the various solar wind parameters and geomagnetic indices.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437.</p>


2021 ◽  
Vol 17 (1) ◽  
pp. 247-255
Author(s):  
Konstantinos CHARISI ◽  
Andreas TSIGOPOULOS ◽  
Spyridon KINTZIOS ◽  
Vassilis PAPATAXIARHIS

Abstract. The paper aims to introduce the ARESIBO project to a greater but targeted audience and outline its main scope and achievements. ARESIBO stands for “Augmented Reality Enriched Situation awareness for Border security”. In the recent years, border security has become one of the highest political priorities in EU and needs the support of every Member State. ARESIBO project is developed under HORIZON 2020 EC Research and Innovation program and it is the joint effort of 20 participant entities from 11 countries. Scientific excellence and technological innovation are top priorities as ARESIBO enhances the current state-of-the-art through technological breakthroughs in Mobile Augmented Reality and Wearables, Robust and Secure Telecommunications, Robots swarming technique and Planning of Context-Aware Autonomous Missions, and Artificial Intelligence (AI), in order to implement user-friendly tools for border and coast guards. The system aims to improve the cognitive capabilities and the perception of border guards through intuitive user interfaces that will help them acquire an improved situation awareness by filtering the huge amount of available information from multiple sources. Ultimately, it will help them respond faster and more effectively when a critical situation occurs.


2021 ◽  
Author(s):  
David Schlaphorst ◽  
Graça Silveira ◽  
João Mata ◽  
Frank Krüger ◽  
Torsten Dahm ◽  
...  

<p>The Madeira and Canary archipelagos, located in the eastern North Atlantic, are two of many examples of hotspot surface expressions, but a better understanding of the crust and upper mantle structure beneath these regions is needed to investigate their structure in more detail. With the study of seismic anisotropy, it is possible to assess the rheology and structure of asthenosphere and lithosphere that can reflect a combination of mantle and crustal contributions.</p><p>Here, as part of the SIGHT project (SeIsmic and Geochemical constraints on the Madeira HoTspot), we present the first detailed study of seismic anisotropy beneath both archipelagos, using data collected from over 60 local three-component seismic land stations. Basing our observations on both teleseismic SKS and local S splitting, we are able to distinguish between multiple layers of anisotropy. We observe significant changes in delay time and fast shear-wave orientation patterns on short length-scales on the order of tens of kilometres beneath the western Canary Islands and Madeira Island. In contrast, the eastern Canary Islands and Porto Santo the pattern is much more uniform. The detected delay time increase and more complex orientation patterns beneath the western Canary Islands and Madeira can be attributed to mantle flow disturbed and diverted on small-length scales by a strong vertical component. This is a clear indication of the existence of a plume at each of those archipelagos, nowadays exerting a strong influence on the western and younger islands. We therefore conclude that a plume-like feature beneath Madeira exists in a similar way to the Canary Island hotspot and that regional mantle flow models for the region should be reassessed.</p><p>This is a contribution to project SIGHT (Ref. PTDC/CTA-GEF/30264/2017). The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.</p>


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2021 ◽  
Author(s):  
Stefanie Holzwarth ◽  
Martin Bachmann ◽  
Bringfried Pflug ◽  
Aimé Meygret ◽  
Caroline Bès ◽  
...  

<p>The objective of the H2020 project “Copernicus Cal/Val Solution (CCVS)” is to define a holistic Cal/Val strategy for all ongoing and upcoming Copernicus Sentinel missions. This includes an improved calibration of currently operational or planned Copernicus Sentinel sensors and the validation of Copernicus core products generated by the payload ground segments. CCVS will identify gaps and propose long-term solutions to address currently existing constraints in the Cal/Val domain and exploit existing synergies between the missions. An overview of existing calibration and validation sources and means is needed before starting the gap analysis. In this context, this survey is concerned with measurement capabilities for aerial campaigns.</p><p>Since decades airborne observations are an essential contribution to support Earth-System model development and space-based observing programs, both in the domains of Earth Observation (radar and optical) as well as for atmospheric research. The collection of airborne reference data can be directly related to satellite observations, since they are collected in ideal validation conditions using well calibrated reference sensors. Many of these sensors are also used to validate and characterize postlaunch instrument performance. The variety of available aircraft equipped with different instrumentations ranges from motorized gliders to jets acquiring data from different heights to the upper troposphere. In addition, balloons are also used as platforms, either small weather balloons with light payload (around 3 kg), or open stratospheric balloons with big payload (more than a ton). For some time now, UAVs/drones are also used in order to acquire data for Cal/Val purposes. They offer a higher flexibility compared to airplanes, plus covering a bigger area compared to in-situ measurements on ground. On the other hand, they also have limitations when it comes to the weight of instrumentation and maximum altitude level above ground. This reflects the wide range of possible aerial measurements supporting the Cal/Val activities.</p><p>The survey will identify the different airborne campaigns. The report will include the description of campaigns, their spatial distribution and extent, ownership and funding, data policy and availability and measurement frequency. Also, a list of common instrumentation, metrological traceability, availability of uncertainty evaluation and quality management will be discussed. The report additionally deals with future possibilities e.g., planned developments and emerging technologies in instrumentation for airborne and balloon based campaigns.</p><p>This presentation gives an overview of the preliminary survey results and puts them in context with the Cal/Val requirements of the different Copernicus Sentinel missions.</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 101004242.</p>


Sign in / Sign up

Export Citation Format

Share Document