Surface faulting during the 29 December 2020 Mw 6.4 Petrinja earthquake (Croatia)

Author(s):  
Paolo Boncio ◽  
Sara Amoroso ◽  
Jure Atanackov ◽  
Stéphane Baize ◽  
Josip Barbača ◽  
...  

<p>The 29 December 2020, Mw 6.4 Petrinja earthquake nucleated at a depth of ~10 km in the Sisak-Moslavina County in northern Croatia, ~6 km WSW of the Petrinja town. Focal mechanisms, aftershocks distribution, and preliminary Sentinel-1 InSAR interferogram suggest that the NW-SE right-lateral strike-slip Pokupsko-Petrinja fault was the source of this event.<br>The Croatian Geological Survey, joined by a European team of earthquake geologists from France, Slovenia and Italy, performed a prompt systematic survey of the area to map the surface effects of the earthquake. The field survey was guided by geological maps, preliminary morphotectonic mapping based on 1:5,000 topographical maps and InSAR interferogram. Locally, field mapping was aided by drone survey.<br>We mapped unambiguous evidence of surface faulting at several sites between Župić to the NW and Hrastovica to the SE, in the central part of the Pokupsko-Petrinja fault, for a total length of ~6.5 km. This is probably a minimum length since several portions of the fault have not been explored yet, and in part crossing forbidden uncleared minefields. Surface faulting was observed on anthropic features (roads, walls) and on Quaternary sediments (soft colluvium and alluvium) and Miocene bedrock (calcarenites). The observed ruptures strike mostly NW-SE, with evidences of strike-slip right-lateral displacement and zones of extension (opening) or contraction (small pressure ridges, moletracks) at<br>local bends of the rupture trace. Those ruptures are interpreted as evidences of coseismic surface faulting (primary effects) as they affect the morphology independently from the slope direction. Ground failures due to gravitational sliding and liquefaction occurrences were also observed, mapped and interpreted as secondary effects (see Amoroso et al., and Vukovski et al., this session). SE of Križ, the rupture broke a water pipeline with a right-lateral offset of several centimetres. Measured right-lateral net displacement varies from a few centimetres up to ~35 cm. A portion of the maximum measured displacement could be due to afterlisp, as it was mapped several days after the main shock. Hybrid surface ruptures (shear plus opening and liquefaction), striking SW-NE, with cm-size left-lateral strike-slip offsets were mapped on the northern side of the Petrinja town, ~3 km NE of the main fault.<br>Overall, the rupture zone appears discontinuous. Several factors might be inferred to explain this pattern such as incomplete mapping of the rupture, inherited structural discontinuities within the Pokupsko-Petrinja fault system, or specific mechanical properties of the Neogene-Quaternary strata</p>

2021 ◽  
Author(s):  
Jakub Fedorik ◽  
Francesco E. Maesano ◽  
Abdulkader M. Alafifi

<p>Strike-slip structures are rarely validated because commonly used 2D restoration techniques are not applicable. Here we present the results of 3D numerical simulation of the restraining bends in Lebanon using boundary element methods of fault deformation implemented in MOVE™. The Lebanon restraining bend is the largest transpressional feature along the Dead Sea Transform (DST), and consists of two mountain ranges: Mount Lebanon on the west, dominated by the active Yammouneh fault, and the Anti-Lebanon Range to the east, influenced by the Serghaya and other faults. We built a new 3D geometrical model of the fault surfaces based on previous mapping of faults onshore and offshore Lebanon, complemented by interpretation of satellite images and DEM, and analogy with experimental models of restraining bend or transpressional structures. The model was simulated in response to the regional stress produced by the left-lateral displacement of the Arabian plate. The simulation accurately predicted the shape and magnitude of positive and negative topographic changes and faults slip directions throughout Lebanon. Furthermore, this simulation supports the hypothesis that the formation of the Anti-Lebanon Range was influenced by the intersection of the DST with the older Palmyrides belt, resulting in failed restraining bend. In contrast, the structure of Mt. Lebanon is similar to laboratory experiments of a restraining bend without inheritance. In addition, our simulation presents an approach of how strike-slip structural models may be validated in areas where subsurface data are limited.</p>


1987 ◽  
Vol 77 (5) ◽  
pp. 1579-1601
Author(s):  
C. J. Langer ◽  
M. G. Bonilla ◽  
G. A. Bollinger

Abstract This study reports on the results of geological and seismological field studies conducted following the rare occurrence of a moderate-sized West African earthquake (mb = 6.4) with associated ground breakage. The epicentral area of the northwestern Guinea earthquake of 22 December 1983 is a coastal margin, intraplate locale with a very low level of historical seismicity. The principal results include the observation that seismic faulting occurred on a preexisting fault system and that there is good agreement among the surface faulting, the spatial distribution of the aftershock hypocenters, and the composite focal mechanism solutions. We are not able, however, to shed any light on the reason(s) for the unexpected occurrence of this intraplate earthquake. Thus, the significance of this study is its contribution to the observational datum for such earthquakes and for the seismicity of West Africa. The main shock was associated with at least 9 km of surface fault-rupture. Trending east-southeast to east-west, measured fault displacements up to ∼13 cm were predominantly right-lateral strike slip and were accompanied by an additional component (5 to 7 cm) of vertical movement, southwest side down. The surface faulting occurred on a preexisting fault whose field characteristics suggest a low slip rate with very infrequent earthquakes. There were extensive rockfalls and minor liquefaction effects at distances less than 10 km from the surface faulting and main shock epicenter. Main shock focal mechanism solutions derived from teleseismic data by other workers show a strong component of normal faulting motion that was not observed in the ground ruptures. A 15-day period of aftershock monitoring, commencing 22 days after the main shock, was conducted. Eleven portable, analog short-period vertical seismographs were deployed in a network with an aperture of 25 km and an average station spacing of 7 km. Ninety-five aftershocks were located from the more than 200 recorded events with duration magnitudes of about 1.5 or greater. Analysis of a selected subset (91) of those events define a tabular aftershock volume (26 km long by 14 km wide by 4 km thick) trending east-southeast and dipping steeply (∼60°) to the south-southwest. Composite focal mechanisms for groups of events, distributed throughout the aftershock volume, exhibit right-lateral, strike-slip motion on subvertical planes that strike almost due east. Although the general agreement between the field geologic and seismologic results is good, our preferred interpretation is for three en-echelon faults striking almost due east-west.


2000 ◽  
Vol 37 (9) ◽  
pp. 1259-1273 ◽  
Author(s):  
M E McMechan

Walker Creek fault zone (WCFZ), well exposed in the western Rocky Mountains of central British Columbia near 54°, comprises a 2 km wide zone of variably deformed Neoproterozoic and Cambrian strata in fault-bounded slivers and lozenges. Extensional shear bands, subhorizontal extension lineations, slickensides, mesoscopic shear bands, and other minor structures developed within and immediately adjacent to the fault zone consistently indicate right-lateral displacement. Offset stratigraphic changes in correlative Neoproterozoic strata indicate at least 60 km of right-lateral displacement across the zone. WCFZ is the southern continuation of the Northern Rocky Mountain Trench (NRMT) fault zone. It shows a through going, moderate displacement, strike-slip fault system structurally links the NRMT and the north-central part of the Southern Rocky Mountain Trench. Strike-slip motion on the WCFZ occurred in the Late Cretaceous to Early Eocene at the same time as northeast-directed shortening in the fold-and-thrust belt. Thus, oblique convergence in the eastern part of the south-central Canadian Cordillera was apparently resolved into parallel northwest-striking zones of strike-slip and thrust faulting during the Late Cretaceous to Early Eocene. The change in the net Late Cretaceous to Early Eocene displacement direction for rocks in the Rocky Mountain trenches from north (56-54°N) to northeast (52-49°N) suggests that the disappearance of strike-slip displacement and increase in fold-and-thrust belt shortening in the eastern Cordillera between 56° and 49°N is largely the result of a north-south change in relative plate motion or strain partitioning across the Cordillera, rather than the southward transformation of right-lateral strike-slip displacement on the Tintina - NRMT fault system into compressional deformation.


2011 ◽  
Vol 182 (4) ◽  
pp. 323-336 ◽  
Author(s):  
Christophe Larroque ◽  
Bertrand Delouis ◽  
Jean-Claude Hippolyte ◽  
Anne Deschamps ◽  
Thomas Lebourg ◽  
...  

AbstractThe lower Var valley is the only large outcropping zone of Plio-Quaternary terrains throughout the southwestern Alps. In order to assess the seismic hazard for the Alps – Ligurian basin junction, we investigated this area to provide a record of earthquakes that have recently occurred near the city of Nice. Although no historical seismicity has been indicated for the lower Var valley, our main objective was to identify traces of recent faulting and to discuss the seismogenic potential of any active faults. We organized multidisciplinary observations as a microseismic investigation (the PASIS survey), with morphotectonic mapping and imagery, and subsurface geophysical investigations. The results of the PASIS dense recording survey were disappointing, as no present-day intense microseismic activity was recorded. From the morphotectonic investigation of the lower Var valley, we revealed several morphological anomalies, such as drainage perturbations and extended linear anomalies that are unrelated to the lithology. These anomalies strike mainly NE-SW, with the major Saint-Sauveur – Donareo lineament, clearly related to faulting of the Plio-Pleistocene sedimentary series. Sub-surface geophysical investigation (electrical resistivity tomography profiling) imaged these faults in the shallow crust, and together with the microtectonic data, allow us to propose the timing of recent faulting in this area. Normal and left-lateral strike-slip faulting occurred several times during the Pliocene. From fault-slip data, the last episode of faulting was left-lateral strike-slip and was related to a NNW-SSE direction of compression. This direction of compression is consistent with the present-day state of stress and the Saint-Sauveur–Donareo fault might have been reactivated several times as a left-lateral fault during the Quaternary. At a regional scale, in the Nice fold-and-thrust belt, these data lead to a reappraisal of the NE-SW structural trends as the major potentially active fault system. We propose that the Saint-Sauveur–Donareo fault belongs to a larger system of faults that runs from near Villeneuve-Loubet to the southwest to the Vésubie valley to the north-east. The question of a structural connection between the Vésubie – Mt Férion fault, the Saint-Sauveur–Donareo fault and its possible extension offshore through the northern Ligurian margin is discussed.The Saint-Sauveur–Donareo fault shows two en-échelon segments that extend for about 8 km. Taking into account the regional seismogenic depth (about 10 km), this fault could produce M ~6 earthquakes if activated entirely during one event. Although a moderate magnitude generally yields a moderate seismic hazard, we suggest that this contribution to the local seismic risk is high, taking into account the possible shallow focal depth and the high vulnerability of Nice and the surrounding urban areas.


Author(s):  
Fred F. Pollitz ◽  
William C. Hammond ◽  
Charles W. Wicks

Abstract The 2020 M 6.5 Stanley, Idaho, earthquake produced rupture in the north of the active Sawtooth fault in the northern basin and range at depth, without any observable surface rupture. Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data yield several millimeters of static offsets out to ∼100  km from the rupture and up to ∼0.1  m of near-field crustal deformation. We combine the GPS and InSAR data with long-period regional seismic waveforms to derive models of kinematic slip and afterslip. We find that the coseismic rupture is complex, likely involving up to 2 m combined left-lateral strike slip and normal slip on a previously unidentified ∼south-southeast-striking fault. This slip is predominantly left-lateral strike slip, different from the dominant east-northeast–west-northwest normal faulting of the region. At least one ∼northeast-trending fault, likely associated with the Trans-Challis fault system, is inferred to have accommodated a few decimeters of right-lateral afterslip, consistent with vigorous aftershock activity at depth along northeast-trending lineations.


The analysis of the distribution of thrusts, normal faults and strike-slip faults of various ages has allowed us to determine the character of lithospheric block displacements in the Soviet Far East. The early Mesozoic, late Mesozoic and Cainozoic kinematics were each essentially different. The Early Mesozoic Dzhagdinsk fault system appeared as a result of the collision of the Bureinsk-Khankaisk microcontinent with the Siberian continent. The largest faults of the system are neither longstanding nor deep but were formed during the latest stage of the structural evolution. The multistage formation of the faults of the Dzhagdinsk system is conditioned by its position at the margin of the continent. The late Mesozoic faults are mainly strike-slip faults caused by the subduction of the oceanic crust at an acute angle with respect to the strike of the active continental margin. The Cainozoic faults were formed under compression on the boundary between the Siberian platform and the Bureinsk massif, but under tension in the east of the region.


1974 ◽  
Vol 64 (4) ◽  
pp. 1005-1016
Author(s):  
C. J. Langer ◽  
M. G. Hopper ◽  
S. T. Algermissen ◽  
J. W. Dewey

abstract Epicenters determined from 164 of the Managua aftershocks define two seismic zones. The primary zone, which is 15 to 20 km in length and strikes northeast along the Tiscapa-Ciudad Jardin fault system, contains 80 per cent of the aftershock locations. A subsidiary zone, northwest of Managua, suggests strain release possibly related to the north-south striking San Judas fault. Depth of foci are principally in the upper 7 km for both zones. Composite fault-plane solutions indicate a predominate left-lateral strike-slip displacement; the preferred planes for each zone agree with the strike of surface fractures or previously mapped faults.


2020 ◽  
Vol 12 (23) ◽  
pp. 3883
Author(s):  
Chenglong Li ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Dezheng Zhao ◽  
Yanchuan Li ◽  
...  

The 2019 Ridgecrest, California earthquake sequence ruptured along a complex fault system and triggered seismic and aseismic slips on intersecting faults. To characterize the surface rupture kinematics and fault slip distribution, we used optical images and Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the displacement caused by the earthquake sequence. We further calculated curl and divergence from the north-south and east-west components, to effectively identify the surface rupture traces. The results show that the major seismogenic fault had a length of ~55 km and strike of 320° and consisted of five secondary faults. On the basis of the determined multiple-fault geometries, we inverted the coseismic slip distributions by InSAR measurements, which indicates that the Mw7.1 mainshock was dominated by the right-lateral strike-slip (maximum strike-slip of ~5.8 m at the depth of ~7.5 km), with a small dip-slip component (peaking at ~1.8 m) on an east-dipping fault. The Mw6.4 foreshock was dominated by the left-lateral strike-slip on a north-dipping fault. These earthquakes triggered obvious aseismic creep along the Garlock fault (117.3° W–117.5° W). These results are consistent with the rupture process of the earthquake sequence, which featured a complicated cascading rupture rather than a single continuous rupture front propagating along multiple faults.


Sign in / Sign up

Export Citation Format

Share Document