How do synoptic conditions affect Liquid Water Path over the sea-ice-free Arctic Ocean during ACLOUD?

Author(s):  
Leif-Leonard Kliesch ◽  
Elena Ruiz Donoso ◽  
Birte Kulla ◽  
Melanie Lauer ◽  
Mario Mech ◽  
...  

<p>Despite the strong influence of cloud liquid water on the radiative budget, the knowledge of its amount and variability in the Arctic is rather limited. The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign took place from May 22 to June 28, 2017 and offers the possibility to investigate the Liquid Water Path (LWP) during various environmental conditions. In this period synoptic conditions were characterized as a cold air outbreak, warm air advection resulting in a period of warm conditions, and a normal period with conditions in between the cold and warm period. Deployed on the research aircraft Polar 5, the Microwave Radar/radiometer for Arctic Clouds (MiRAC) collected downward observations of radar reflectivity and Brightness Temperatures (T<sub>b</sub>) over sea-ice-free ocean from aircraft altitudes above 2.8 km. From T<sub>b</sub> a unique high-resolution data set of cloud LWP over remote sea-ice-free Arctic ocean is retrieved. The airborne microwave retrieved LWP is compared with LWP retrieved from visible/near-infrared techniques taken on board the aircraft as well as with two different satellite products. The respective uncertainties and the agreement among the different techniques are discussed.  </p><p>The different cloud situations observed during the three ACLOUD periods are investigated to identify differences in LWP distribution from the airborne measurements. To analyze the representativity of the limitation to specific flight tracks, continuous ground-based observations at Ny-Ålesund, ERA5 reanalysis, and simulations with the ICON model are used. While in general the airborne sampling seems to be representative for the larger region systematic difference in LWP amount between the different products occurs which will be discussed in this presentation.</p>

2008 ◽  
Vol 21 (5) ◽  
pp. 866-882 ◽  
Author(s):  
Irina V. Gorodetskaya ◽  
L-Bruno Tremblay ◽  
Beate Liepert ◽  
Mark A. Cane ◽  
Richard I. Cullather

Abstract The impact of Arctic sea ice concentrations, surface albedo, cloud fraction, and cloud ice and liquid water paths on the surface shortwave (SW) radiation budget is analyzed in the twentieth-century simulations of three coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The models are the Goddard Institute for Space Studies Model E-R (GISS-ER), the Met Office Third Hadley Centre Coupled Ocean–Atmosphere GCM (UKMO HadCM3), and the National Center for Atmosphere Research Community Climate System Model, version 3 (NCAR CCSM3). In agreement with observations, the models all have high Arctic mean cloud fractions in summer; however, large differences are found in the cloud ice and liquid water contents. The simulated Arctic clouds of CCSM3 have the highest liquid water content, greatly exceeding the values observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. Both GISS-ER and HadCM3 lack liquid water and have excessive ice amounts in Arctic clouds compared to SHEBA observations. In CCSM3, the high surface albedo and strong cloud SW radiative forcing both significantly decrease the amount of SW radiation absorbed by the Arctic Ocean surface during the summer. In the GISS-ER and HadCM3 models, the surface and cloud effects compensate one another: GISS-ER has both a higher summer surface albedo and a larger surface incoming SW flux when compared to HadCM3. Because of the differences in the models’ cloud and surface properties, the Arctic Ocean surface gains about 20% and 40% more solar energy during the melt period in the GISS-ER and HadCM3 models, respectively, compared to CCSM3. In twenty-first-century climate runs, discrepancies in the surface net SW flux partly explain the range in the models’ sea ice area changes. Substantial decrease in sea ice area simulated during the twenty-first century in CCSM3 is associated with a large drop in surface albedo that is only partly compensated by increased cloud SW forcing. In this model, an initially high cloud liquid water content reduces the effect of the increase in cloud fraction and cloud liquid water on the cloud optical thickness, limiting the ability of clouds to compensate for the large surface albedo decrease. In HadCM3 and GISS-ER, the compensation of the surface albedo and cloud SW forcing results in negligible changes in the net SW flux and is one of the factors explaining moderate future sea ice area trends. Thus, model representations of cloud properties for today’s climate determine the ability of clouds to compensate for the effect of surface albedo decrease on the future shortwave radiative budget of the Arctic Ocean and, as a consequence, the sea ice mass balance.


2019 ◽  
Author(s):  
Marek Jacob ◽  
Felix Ament ◽  
Manuel Gutleben ◽  
Heike Konow ◽  
Mario Mech ◽  
...  

Abstract. Clouds are a strongly variable component of the climate system and several studies have identified especially marine low level clouds to play a critical role for the climate. Liquid water path (LWP) is an important quantity to characterize clouds. Passive microwave satellite sensors provide the most direct estimate on global scale, but suffer from high uncertainties due to large footprints and the superposition of cloud and precipitation signals. Here, we use high spatial resolution airborne microwave radiometer (MWR) measurements together with cloud radar and lidar observations to better understand LWP of warm clouds over the tropical North Atlantic. The nadir measurements were taken by the German High Altitude and Long range research aircraft (HALO) in December 2013 (dry season) and August 2016 (wet season) during two Next generation Advanced Remote sensing for VALidation campaigns (NARVAL). Microwave retrievals of integrated water vapor (IWV), LWP and rain water path (RWP) are developed using artificial neural network techniques and a unique database based on cloud-resolving model simulations with 1.25 km grid spacing. The IWV and LWP retrievals share the same eight MWR frequency channels as their sole input. The comparison of retrieved IWV with coincident dropsondes and water vapor lidar measurements shows root-mean-square deviations below 1.4 kg m−2 over the range from 20 to 60 kg m−2. This comparison raises the confidence in LWP retrievals which can only be assessed theoretically. The theoretical analysis shows the dependency of the uncertainty on LWP itself as the error is below 20 g m−2 for LWP below 100 g m−2 and below 20 % above. The identification of clear sky scenes by ancillary measurements, here backscatter lidar, is crucial for thin clouds (LWP < 12 g m−2) as the microwave retrieved LWP uncertainty is higher than 100 %. The RWP retrieval combines active and passive microwave observations and is able to detect drizzle and light precipitation. The analysis of both campaigns reveals that clouds were more frequent in the dry than in the wet season and their LWP and RWP were higher, but microwave scattering of ice was observed more frequently in the wet season (1.6 % vs. 0.5 % of the time). As to be expected, the observed IWV clearly shows that the wet season (mean IWV = 41 kg m−2) is more humid than the dry season (mean IWV = 28 kg m−2). The results reveal that the observed frequency distributions of IWV are strongly affected by the choice of the flight pattern. Therefore, the airborne observations need to be used carefully to mediate between long-term ground-based and spaceborne measurements to draw statistically sound conclusions.


2008 ◽  
Vol 8 (16) ◽  
pp. 4641-4654 ◽  
Author(s):  
O. Geoffroy ◽  
J.-L. Brenguier ◽  
I. Sandu

Abstract. The recent ACE-2, EPIC and DYCOMS-II field experiments showed that the drizzle precipitation rate of marine stratocumulus scales with the cloud geometrical thickness or liquid water path, and the droplet concentration, when averaged over a domain typical of a GCM grid. This feature is replicated here with large-eddy-simulations using state-of-the-art bulk parameterizations of precipitation formation in stratocumulus clouds. The set of numerical simulations shows scaling relationships similar to the ones derived from the field experiments, especially the one derived from the DYCOMS-II data set. This result suggests that the empirical relationships were not fortuitous and that they reflect the mean effect of cloud physical processes. Such relationships might be more suited to GCM parameterizations of precipitation from shallow clouds than bulk parameterizations of autoconversion, that were initially developed for cloud resolving models.


2014 ◽  
Vol 53 (12) ◽  
pp. 2775-2789 ◽  
Author(s):  
Joseph Sedlar

AbstractObservations of cloud properties and thermodynamics from two Arctic locations, Barrow, Alaska, and Surface Heat Budget of the Arctic (SHEBA), are examined. A comparison of in-cloud thermodynamic mixing characteristics for low-level, single-layer clouds from nearly a decade of data at Barrow and one full annual cycle over the sea ice at SHEBA is performed. These cloud types occur relatively frequently, evident in 27%–30% of all cloudy cases. To understand the role of liquid water path (LWP), or lack thereof, on static in-cloud mixing, cloud layers are separated into optically thin and optically thick LWP subclasses. Clouds with larger LWPs tend to have a deeper in-cloud mixed layer relative to optically thinner clouds. However, both cloud LWP subclasses are frequently characterized by an in-cloud stable layer above the mixed layer top. The depth of the stable layer generally correlates with an increased temperature gradient across the layer. This layer often contains a specific humidity inversion, but it is more frequently present when cloud LWP is optically thinner (LWP < 50 g m−2). It is suggested that horizontal thermodynamic advection plays a key role modifying the vertical extent of in-cloud mixing and likewise the depth of in-cloud stable layers. Furthermore, longwave atmospheric opacity above the cloud top is generally enhanced during cases with optically thinner clouds. Thermodynamic advection, cloud condensate distribution within the stable layer, and enhanced atmospheric radiation above the cloud are found to introduce a thermodynamic–radiative feedback that potentially modifies the extent of LWP and subsequent in-cloud mixing.


2019 ◽  
Vol 12 (6) ◽  
pp. 3237-3254 ◽  
Author(s):  
Marek Jacob ◽  
Felix Ament ◽  
Manuel Gutleben ◽  
Heike Konow ◽  
Mario Mech ◽  
...  

Abstract. Liquid water path (LWP) is an important quantity to characterize clouds. Passive microwave satellite sensors provide the most direct estimate on a global scale but suffer from high uncertainties due to large footprints and the superposition of cloud and precipitation signals. Here, we use high spatial resolution airborne microwave radiometer (MWR) measurements together with cloud radar and lidar observations to better understand the LWP of warm clouds over the tropical North Atlantic. The nadir measurements were taken by the German High Altitude and LOng range research aircraft (HALO) in December 2013 (dry season) and August 2016 (wet season) during two Next-generation Advanced Remote sensing for VALidation (NARVAL) campaigns. Microwave retrievals of integrated water vapor (IWV), LWP, and rainwater path (RWP) are developed using artificial neural network techniques. A retrieval database is created using unique cloud-resolving simulations with 1.25 km grid spacing. The IWV and LWP retrievals share the same eight MWR frequency channels in the range from 22 to 31 GHz and at 90 GHz as their sole input. The RWP retrieval combines active and passive microwave observations and is able to detect drizzle and light precipitation. The comparison of retrieved IWV with coincident dropsondes and water vapor lidar measurements shows root-mean-square deviations below 1.4 kg m−2 over the range from 20 to 60 kg m−2. This comparison raises the confidence in LWP retrievals which can only be assessed theoretically. The theoretical analysis shows that the LWP error is constant with 20 g m−2 for LWP below 100 g m−2. While the absolute LWP error increases with increasing LWP, the relative one decreases from 20 % at 100 g m−2 to 10 % at 500 g m−2. The identification of clear-sky scenes by ancillary measurements, here backscatter lidar, is crucial for thin clouds (LWP < 12 g m−2) as the microwave retrieved LWP uncertainty is higher than 100 %. The analysis of both campaigns reveals that clouds were more frequent (47 % vs. 30 % of the time) in the dry than in the wet season. Their average LWP (63 vs. 40 g m−2) and RWP (6.7 vs. 2.7 g m−2) were higher as well. Microwave scattering of ice, however, was observed less frequently in the dry season (0.5 % vs. 1.6 % of the time). We hypothesize that a higher degree of cloud organization on larger scales in the wet season reduces the overall cloud cover and observed LWP. As to be expected, the observed IWV clearly shows that the dry season is on average less humid than the wet season (28 vs. 41 kg m−2). The results reveal that the observed frequency distributions of IWV are substantially affected by the choice of the flight pattern. This should be kept in mind when using the airborne observations to carefully mediate between long-term ground-based and spaceborne measurements to draw statistically sound conclusions.


2020 ◽  
Vol 12 (3) ◽  
pp. 2121-2135
Author(s):  
Caroline A. Poulsen ◽  
Gregory R. McGarragh ◽  
Gareth E. Thomas ◽  
Martin Stengel ◽  
Matthew W. Christensen ◽  
...  

Abstract. We present version 3 (V3) of the Cloud_cci Along-Track Scanning Radiometer (ATSR) and Advanced ATSR (AATSR) data set. The data set was created for the European Space Agency (ESA) Cloud_cci (Climate Change Initiative) programme. The cloud properties were retrieved from the second ATSR (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) spanning 1995–2003 and the AATSR on board Envisat, which spanned 2002–2012. The data are comprised of a comprehensive set of cloud properties: cloud top height, temperature, pressure, spectral albedo, cloud effective emissivity, effective radius, and optical thickness, alongside derived liquid and ice water path. Each retrieval is provided with its associated uncertainty. The cloud property retrievals are accompanied by high-resolution top- and bottom-of-atmosphere shortwave and longwave fluxes that have been derived from the retrieved cloud properties using a radiative transfer model. The fluxes were generated for all-sky and clear-sky conditions. V3 differs from the previous version 2 (V2) through development of the retrieval algorithm and attention to the consistency between the ATSR-2 and AATSR instruments. The cloud properties show improved accuracy in validation and better consistency between the two instruments, as demonstrated by a comparison of cloud mask and cloud height with co-located CALIPSO data. The cloud masking has improved significantly, particularly in its ability to detect clear pixels. The Kuiper Skill score has increased from 0.49 to 0.66. The cloud top height accuracy is relatively unchanged. The AATSR liquid water path was compared with the Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP) in regions of stratocumulus cloud and shown to have very good agreement and improved consistency between ATSR-2 and AATSR instruments. The correlation with MAC-LWP increased from 0.4 to over 0.8 for these cloud regions. The flux products are compared with NASA Clouds and the Earth's Radiant Energy System (CERES) data, showing good agreement within the uncertainty. The new data set is well suited to a wide range of climate applications, such as comparison with climate models, investigation of trends in cloud properties, understanding aerosol–cloud interactions, and providing contextual information for co-located ATSR-2/AATSR surface temperature and aerosol products. The following new digital identifier has been issued for the Cloud_cci ATSR-2/AATSRv3 data set: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V003 (Poulsen et al., 2019).


2021 ◽  
Author(s):  
Philipp Richter ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Hannes Griesche ◽  
Penny M. Rowe ◽  
...  

Abstract. A dataset of microphysical cloud parameters from optically thin clouds, retrieved from infrared spectral radiances measured in summer 2017 in the Arctic, is presented. Measurements were conducted using a mobile Fourier-transform infrared (FTIR) spectrometer which was carried by the RV Polarstern. This dataset contains retrieved optical depths and effective radii of ice and water, from which the liquid water path and ice water path are calculated. These water paths and the effective radii are compared with derived quantities from a combined cloud radar, lidar and microwave radiometer measurement synergy retrieval, called Cloudnet. Comparing the liquid water paths from the infrared retrieval and Cloudnet shows significant correlations with a standard deviation of 8.60 g · m−2. Although liquid water path retrievals from microwave radiometer data come with a uncertainty of at least 20 g · m−2, a significant correlation and a standard deviation of 5.32 g · m−2 between the results of clouds with a liquid water path of at most 20 g · m−2 retrieved from infrared spectra and results from Cloudnet can be seen. Therefore, despite its large uncertainty, the comparison with data retrieved from infrared spectra shows that optically thin clouds of the measurement campaign in summer 2017 can be observed well using microwave radiometers within the Cloudnet framework. Apart from this, the dataset of microphysical cloud properties presented here allows to perform calculations of the cloud radiative effects, when the Cloudnet data from the campaign are not available, which was from the 22nd July 2017 until the 19th August 2017. The dataset is published at Pangaea (Richter et al., 2021).


2019 ◽  
Author(s):  
Alexander Forryan ◽  
Sheldon Bacon ◽  
Takamasa Tsubouchi ◽  
Sinhué Torres-Valdés ◽  
Alberto C. Naveira Garabato

Abstract. The traditionally divergent perspectives of the Arctic Ocean freshwater budget provided by control volume-based and geochemical tracer-based approaches are reconciled, and the sources of inter-approach inconsistencies identified, by comparing both methodologies using an observational data set of the circulation and water mass properties at the basin's boundary in summer 2005. The control volume-based and geochemical estimates of the Arctic Ocean (liquid) freshwater fluxes are 147 &amp;pm; 42 mSv (1 Sv = 106 m3 s−1) and 140 &amp;pm; 67 mSv, respectively, and are thus in agreement. Examination of meteoric, sea ice and seawater contributions to the freshwater fluxes reveals near equivalence of the net freshwater flux out of the Arctic and the meteoric source to the basin, and a close balance between the transport of solid sea ice and ice-derived meltwater out of the Arctic and the freshwater deficit in the seawater from which the sea ice has been frozen out. Inconsistencies between the two approaches are shown to stem from the distinction between "Atlantic" and "Pacific" waters based on tracers in geochemical tracer-based calculations. The definition of Pacific waters is found to be particularly problematic, because of the non-conservative nature of the inorganic nutrients underpinning that definition, as well as the low salinity characterising waters entering the Arctic through Bering Strait - which makes them difficult to isolate from meteoric sources.


2012 ◽  
Vol 12 (12) ◽  
pp. 31153-31186 ◽  
Author(s):  
J. Zábori ◽  
R. Krejci ◽  
J. Ström ◽  
P. Vaattovaara ◽  
A. M. L. Ekman ◽  
...  

Abstract. Primary marine aerosols (PMA) are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw) range between −1 °C and 15 °C. A sharp decrease in PMA emissions for a Tw increase from −1 °C to 4 °C was followed by a lower rate of change in PMA emissions for Tw up to about 6 °C. Near constant number concentrations for water temperatures between 6 °C to 10 °C and higher were recorded. Even though the total particle number concentrations changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for Dp < 0.125 μm measured during winter conditions were similar (deviation of up to 3%), or lower (up to 70%) than the ones measured during summer conditions (for the same water temperature range). For Dp > 0.125 μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%). The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1 °C to 10 °C during winter measurements showed a decrease in the peak of relative particle number concentration at about Dp of 0.180 μm, while an increase was observed for particles with Dp > 1 μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range 7–11 °C. The differences in the shape of the number size distributions between winter and summer may be caused by different production of organic material in water, different local processes modifying the water masses within the fjord (like sea ice production in winter and increased glacial melt water inflow during summer) and different origin of the dominant sea water mass. Further research is needed regarding the contribution of these factors to the PMA production.


Sign in / Sign up

Export Citation Format

Share Document