Brittle-ductile deformation in high-pressure continental units and deep episodic tremor and slip

Author(s):  
Francesco Giuntoli ◽  
Giulio Viola

<p>The geological record of deep seismic activity in subduction zones is generally limited due to common rock overprinting during exhumation and only a few regions allow studying well-preserved exhumed deep structures. The Northern Apennines (Italy) are one such area, granting access to continental units (Tuscan Metamorphic Units) that were subducted to high-pressure conditions, were affected by brittle-ductile deformation while accommodating deep tremor and slip and then exhumed back to surface, with only minor retrogression.</p><p>Our approach is based on detailed fieldwork, microstructural and petrological investigations. Field observations reveal a metamorphosed broken formation composed of boudinaged metaconglomerate levels enveloped by metapelite displaying a pervasive mylonitic foliation. Shear veins occur in both lithologies, but are more common and laterally continuous in the metapelite. They are mostly parallel to the foliation and composed of iso-oriented stretched quartz and Mg-carpholite (XMg>0.5) fibres, which are single-grains up to several centimetres long. These fibres define a stretching direction coherent with that observed in the metaconglomerate and metapelite, which is marked by K-white mica and quartz. Thermodynamic modeling constrains the formation of the high-pressure veins and the mylonitic foliation to ~ 1 GPa and 350°C, corresponding to c. 30-40 km depth in the subduction channel.</p><p>Shear veins developed in subducted (meta)sediments are a key indicator of episodic tremor and slip (e.g. <sup>1</sup>). We propose that these structures reflect the repeated alternation of localised brittle failure, with shear veins development, and more diffuse viscous deformation. These cycles were probably related to the fluctuation of pore pressure that repeatedly reached lithostatic values. Concluding, these structures can be considered the geological record of episodic tremors and slip occurring at >30 km of depth in the Apenninic subduction channel.</p><p>1. Fagereng, Å., Remitti, F. & Sibson, R. H. Incrementally developed slickenfibers — Geological record of repeating low stress-drop seismic events? Tectonophysics <strong>510</strong>, 381–386 (2011).</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 839779.</p>

2020 ◽  
Author(s):  
Mayda Arrieta-Prieto ◽  
Carlos Zuluaga-Castrillón ◽  
Oscar Castellanos-Alarcón ◽  
Carlos Ríos-Reyes

<p>High-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones and to try to reconstruct P-T trajectories for these complexes.</p><p>Previous studies on the Raspas complex (southern Ecuador) agree to state that it is composed of metamorphic rocks, mainly blueschists and eclogites, containing the mineral assemblage: glaucophane + garnet + epidote + omphacite + white mica + rutile ± quartz ± apatite ± pyrite ± calcite; which stabilized in metamorphic conditions of high pressure and low temperature. Additionally, the Raspas Complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during the Late Jurassic - Early Cretaceous interval; and the exhumation of the complex was related to subduction channels. However, the evidence presented in the existing literature makes little emphasis on the reconstruction of thermobarometric models for the rocks of this complex.</p><p>By combining petrographic observations, whole-rock chemistry, and mineral chemistry in this work; it was possible to determine that pressure values of 10 ± 3 Kbar and temperature values of 630 ± 30 ° C, (obtained by simulations with THERMOCALC®) correspond to an event of retrograde metamorphism, suffered by the complex during its exhumation. This theory is complemented by the specific textures (that suggest this retrograde process) observed during petrographic analysis, such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.</p><p>The results obtained, together with the thermobarometry data published for the Arquía complex in Colombia, allow us to establish a P-T trajectory, that may suggest a genetic relationship between these two complexes as a result of the tectonic processes associated with an active subduction margin that affected the NW margin of the South American plate at the end of the Jurassic.</p><p> </p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. W. Förster ◽  
K. Selway

AbstractSediments play a key role in subduction. They help control the chemistry of arc volcanoes and the location of seismic hazards. Here, we present a new model describing the fate of subducted sediments that explains magnetotelluric models of subduction zones, which commonly show an enigmatic conductive anomaly at the trenchward side of volcanic arcs. In many subduction zones, sediments will melt trenchward of the source region for arc melts. High-pressure experiments show that these sediment melts will react with the overlying mantle wedge to produce electrically conductive phlogopite pyroxenites. Modelling of the Cascadia and Kyushu subduction zones shows that the products of sediment melting closely reproduce the magnetotelluric observations. Melting of subducted sediments can also explain K-rich volcanic rocks that are produced when the phlogopite pyroxenites melt during slab roll-back events. This process may also help constrain models for subduction zone seismicity. Since melts and phlogopite both have low frictional strength, damaging thrust earthquakes are unlikely to occur in the vicinity of the melting sediments, while increased fluid pressures may promote the occurrence of small magnitude earthquakes and episodic tremor and slip.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Keita Nakamoto ◽  
Yoshihiro Hiramatsu ◽  
Takahiko Uchide ◽  
Kazutoshi Imanishi

AbstractSlip phenomena on plate interfaces reflect the heterogeneous physical properties of the slip plane and, thus, exhibit a wide variety of slip velocities and rupture propagation behaviors. Recent findings on slow earthquakes reveal similarities and differences between slow and regular earthquakes. Episodic tremor and slip (ETS) events, a type of slow earthquake widely observed in subduction zones, likewise show diverse activity. We investigated the growth of 17 ETS events beneath the Kii Peninsula in the Nankai subduction zone, Japan. Analyses of waveform data recorded by a seismic array enabled us to locate tremor hypocenters and estimate the migration patterns and spatial distribution of the energy release of tremor events. Here, we describe three major features in the growth of ETS events. First, independent of their start point and migration pattern, ETS events exhibit patches of high seismic energy release on the up-dip part of the ETS zone, suggesting that the location of these patches is controlled by inherent physical or frictional properties of the plate interface. Second, ETS events usually start outside the high-energy patches, and their final extent depends on whether the patches participate in the rupture. Third, we recognize no size dependence in the initiation phase of ETS events of different sizes with comparable start points. These features demonstrate that the cascading rupture of high-energy patches governs the growth of ETS events, just as the cascading rupture of asperities governs the growth of regular earthquakes.


2020 ◽  
Author(s):  
Whitney Behr ◽  
Carolyn Tewksbury-Christle ◽  
Alissa Kotowski ◽  
Claudio Cannizzaro ◽  
Robert Blass ◽  
...  

<p>Episodic tremor and slow slip (ETS) is observed in several subduction zones down-dip of the locked megathrust, and may provide clues for preparatory processes before megathrust rupture. Exhumed rocks provide a unique opportunity to evaluate the sources of rheological heterogeneity on the subduction interface and their potential role in generating ETS-like behavior. We present data from two subduction interface shear zones representative of the down-dip extent of the megathrust: the Condrey Mountain Schist (CMS) in northern CA (greenschist to blueschist facies conditions) and the Cycladic Blueschist Unit (CBU) on Syros Island, Greece (blueschist to eclogite facies). Both complexes highlight the propensity for fluid-mediated metamorphic reactions to produce strong rheological heterogeneities:</p><p>In the CMW, hydration reactions led to progressive serpentinization of peridotite bodies that were entrained from the overriding plate and underplated along with oceanic-affinity sediments. The margins of each peridotite-serpentinite lens show extreme strain localization accommodated by dislocation glide and minor pressure solution in antigorite, whereas lens interiors show evidence for more distributed, alternating, frictional-viscous deformation, with abundant crack-seal veins occupied by antigorite, brucite and oxides that are in some places also ductilely sheared. Deformation in the surrounding metasedimentary matrix was purely viscous.</p><p>In the CBU on Syros Island, dehydration reactions in MORB-affinity basalts, subducted and underplated with oceanic and continental-affinity sediments, led to progressive development of strong eclogitic lenses within a weaker blueschist and metasedimentary matrix. The eclogite lenses are commonly coarse-grained and massive and show brittle deformation in the form of dilational and shear fractures/veins filled with quartz, white mica, glaucophane and/or chlorite. Brittle deformation in the eclogites is coeval with ductile deformation in the surrounding blueschist and metasedimentary matrix, indicating concurrent frictional-viscous flow.</p><p>Although we cannot easily distinguish transient deformation processes in exhumed rocks, we can use the following three approaches to assess whether these heterogeneities could have generated deformation behaviors similar to deep ETS: 1) We measure displacements within, and dimensions of the heterogeneities in outcrop/map-scale to estimate the maximum possible seismic moment that would be released when the frictional heterogeneities slip;  2) We compare deformation mechanisms inferred from field and microstructural observations to their expected mechanical behavior from rock deformation experiments; and 3) We use seismo-thermo-mechanical modeling to examine expected slip velocities and moment-duration ratios for frictional-viscous shear zones that are scaled to observations from nature and the lab.  </p><p>All three approaches suggest that frictional-viscous heterogeneities of the types and length-scales we observe in the exhumed rock record are compatible with ETS as documented in modern subduction zones.</p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Atsushi Okamoto ◽  
Ryosuke Oyanagi ◽  
Kazuki Yoshida ◽  
Masaoki Uno ◽  
Hiroyuki Shimizu ◽  
...  

AbstractMore than one teramole of carbon per year is subducted as carbonate or carbonaceous material. However, the influence of carbonation/decarbonation reactions on seismic activity within subduction zones is poorly understood. Here we present field and microstructural observations, including stable isotope analyses, of carbonate veins within the Higuchi serpentinite body, Japan. We find that the carbon and oxygen isotope compositions of carbonate veins indicate that carbonic fluids originated from organic materials in metasediments. Thermodynamic calculations reveal that carbonation of serpentinite was accompanied by a solid volume decrease, dehydration, and high magnesium mobility. We propose that carbonation of the mantle wedge occurs episodically in a self-promoting way and is controlled by a solid volume contraction and fluid overpressure. In our conceptual model, brittle fracturing and carbonate precipitation were followed by ductile flow of carbonates and hydrous minerals; this might explain the occurrence of episodic tremor and slip in the serpentinized mantle wedge.


2020 ◽  
Author(s):  
Keita Nakamoto ◽  
Yoshihiro Hiramatsu ◽  
Takahiko Uchide ◽  
Kazutoshi Imanishi

Abstract Slip phenomena on plate interfaces reflect the heterogeneous physical properties of the slip plane and thus exhibit a wide variety of slip velocities and rupture propagation behaviors. Recent findings on slow earthquakes reveal similarities and differences between slow and regular earthquakes. Episodic tremor and slip (ETS) events, a type of slow earthquake widely observed in subduction zones, likewise show diverse activity. We investigated the growth of 17 ETS events beneath the Kii Peninsula in the Nankai subduction zone, Japan. Analyses of waveform data recorded by a seismic array enabled us to locate tremor hypocenters and estimate the migration patterns and spatial distribution of the energy release of tremor events. Here we describe three major features in the growth of ETS events. First, independent of their start point and migration pattern, ETS events exhibit patches of high seismic energy release on the up-dip part of the ETS zone, suggesting that the location of these patches is controlled by inherent physical or frictional properties of the plate interface. Second, ETS events usually start outside the high-energy patches, and their final extent depends on whether the patches participate in the rupture. Third, we recognize no size dependence in the initiation phase of ETS events of different sizes with comparable start points. These features demonstrate that the cascading rupture of high-energy patches governs the growth of ETS events, just as the cascading rupture of asperities govern the growth of regular earthquakes.


2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2007 ◽  
Vol 70 (4) ◽  
pp. 1029-1032 ◽  
Author(s):  
H. Z. SENYUVA ◽  
J. GILBERT ◽  
U. ULKEN

Dried figs for export from Turkey from crop years 2003 through 2006 were tested for aflatoxin B1 and total aflatoxins. For export to the European Union, consignments of 0.5 to 10 tonnes of dried figs were sampled according to European Commission regulations, and high-pressure liquid chromatography (HPLC) was used to determine concentrations of aflatoxins B1, B2, G1, and G2. For each consignment of dried figs, a 30-kg sample (comprising 100 subsamples) was divided into three 10-kg subsamples, which were separately blended and analyzed with HPLC. This monitoring effort was conducted for figs from 2003, 2004, 2005, and up to June 2006, for a total of 10,396 30-kg samples (28,489 analyses). The incidence of contamination with aflatoxin B1 at higher than 2 ng/g was on average 0.6, 2.0, 4.0, and 2.4% for 2003, 2004, 2005, and up to June 2006, respectively, whereas contamination with total aflatoxins at higher than 4 ng/g was 2.6, 3.0, 5.1, and 2.7%. There was significant variability in contamination between replicate 1-kg samples, indicating small numbers of individual contaminated figs were probably responsible. There were also substantial differences in the relative proportions of aflatoxins B1, B2, G1, and G2 among samples, suggesting different contributing fungal sources.


Sign in / Sign up

Export Citation Format

Share Document