Сhanges in air quality and aerosol pollution in Moscow megacity and its direct and indirect impact on radiative and meteorological properties of the atmosphere due to COVID-19 pandemic lockdown in spring 2020 according to modelling and measurements.

Author(s):  
Nataly Chubarova ◽  
Elizaveta Androsova ◽  
Alexander Kirsanov ◽  
Alexei Poliukhov ◽  
Ekaterina Zhdanova ◽  
...  

<p>Atmospheric aerosol has a noticeable effect on the microphysical and optical properties of the atmosphere, solar radiation, temperature and humidity conditions, thereby determining the quality of the forecast of important meteorological elements and affecting the regional climate and the dynamics of geochemical processes. Using the results of the spring AeroRadCity experiment at the MSU Meteorological Observatory in 2018-2019, and numerical calculations on the base of modern COSMO and COSMO-ART mesoscale models using Russian (-Ru) configurations we determined the level and main features of urban air/aerosol pollution, and assessed its magnitude and its impact on the radiative and meteorological characteristics of the atmosphere in typical conditions (Chubarova et al., 2020). In the context of the coronavirus pandemic in 2020, especially during the period of lockdown in the spring, there was a significant decrease in emissions of pollutants in many countries, including Russia. The aim of this study is to show the consequences of decrease in emissions of pollutants on the air quality and on urban aerosol pollution. A special attention is paid to the division between the effects of meteorological factors and the influence of pollution emission on aerosol and gas concentration. The effects of the air pollution decrease on solar radiation and air temperature during this period have been analyzed using COSMO-Ru-ART model.  For a more detailed study of the observed spatial aerosol distribution on solar radiation and air temperature, we have developed a methodology of the implementation of the satellite aerosol optical thickness (AOT) data in the COSMO-Ru model. Using this approach we evaluated the radiative and temperature effects observed due to aerosol in typical conditions during the spring of 2018-2019 and during the period of lockdown in the spring of 2020 under various meteorological conditions. To do this, the satellite AOT data from the MAIAC/MODIS algorithm and aerosol measurements from Cimel sun photometers data were used for characterising the urban aerosol in typical and lockdown conditions. We also discuss the aerosol indirect effects on cloud properties using an experimental scheme of COSMO-Ru model and their influence on solar radiation and surface temperature during this period. The aerosol study has been partially supported by the RSF grant number 18-17-00149; the analysis of gas species has been partially funded by the megagrant number 2020-220-08-5835.</p><p>Reference:</p><p>Chubarova N.Ye., Ye.Yu. Zhdanova., Ye.Ye. Androsova, A.A. Kirsanov, M.V. Shatunova, Yu.O. Khlestova, Ye.V. Volpert, A.A. Poliukhov, I.D. Eremina, D.V. Vlasov, O.B. Popovicheva, A.S. Ivanov, Ye.V. Gorbarenko, Ye.I. Nezval, D.V. Blinov, G.S. Rivin. The aerosol urban pollution and its effects on weather, regional climate and geochemical processes: Monograph / Edited by N.Ye. Chubarova – Moscow, MAKS Press, 2020. 339 pp.  ISBN 978-5-317-06464-8</p>

2010 ◽  
Vol 3 (6) ◽  
pp. 5469-5498 ◽  
Author(s):  
N. Ye. Chubarova ◽  
M. A. Sviridenkov ◽  
A. Smirnov ◽  
B. N. Holben

Abstract. Simultaneous long-term measurements by the collocated AERONET CIMEL sun/sky photometers at the Moscow State University Meteorological Observatory (MSU MO) and at the Zvenigorod Scientific Station (ZSS) of the A. M. Obukhov Institute of Atmospheric Physics during September 2006–April 2009 provide the estimates of the effects of urban pollution on different aerosol properties in different seasons. The average difference in aerosol optical thickness between MO MSU and ZSS, which can characterize the effect of aerosol pollution, has been estimated to be about dAOT = 0.02 in visible spectral region. The most pronounced difference is observed in winter conditions when relative AOT difference can reach 30%. The high correlation of the AOT's, the Angstrom exponent values and the effective radii between the sites confirms that natural processes are the dominating factor in the changes of the aerosol properties even over the Moscow megacity area. The existence of positive correlation between dAOT and difference in water vapor content explains many cases with large dAOT between the sites by the time lag in the airmass advection. However, after excluding the difference due to this factor, AOT in Moscow remains higher even in more number of cases (more than 75%) with the same mean dAOT = 0.02. Due to the negative average difference in aerosol radiative forcing at the TOA of about dARF = −0.9 W/m2, the aerosol urban pollution provides a distinct cooling effect of the atmosphere. Due to the pollution effects, the PAR and UV irradiance reaching the ground is only 2–3% lower, though in some situations the attenuation can reach 13% in visible and more than 20% in UV spectral region.


2011 ◽  
Vol 4 (2) ◽  
pp. 367-378 ◽  
Author(s):  
N. Y. Chubarova ◽  
M. A. Sviridenkov ◽  
A. Smirnov ◽  
B. N. Holben

Abstract. Simultaneous measurements by the collocated AERONET CIMEL sun/sky photometers at the Moscow State University Meteorological Observatory (MSU MO) and at the Zvenigorod Scientific Station (ZSS) of the A. M. Obukhov Institute of Atmospheric Physics during September 2006–April 2009 provide the estimates of the effects of urban pollution on various aerosol properties in different seasons. The average difference in aerosol optical thickness between MO MSU and ZSS, which can characterize the effect of aerosol pollution, has been estimated to be about dAOT = 0.02 in visible spectral region. The most pronounced difference is observed in winter conditions when relative AOT difference can reach 26%. The high correlation of the AOT's, the Angstrom exponent values and the effective radii between the sites confirms that natural processes are the dominating factor in the changes of the aerosol properties even over the Moscow megacity area. The existence of positive correlation between dAOT and difference in water vapor content explains many cases with large dAOT between the sites by the time lag in the airmass advection. However, after excluding the difference due to this factor, AOT in Moscow remains higher even in a larger number of cases (more than 75%) with the same mean dAOT = 0.02. Due to the negative average difference in aerosol radiative forcing at the TOA of about dARFTOA = −0.9 W m−2, the aerosol urban pollution provides a distinct cooling effect of the atmosphere. The PAR and UV irradiance reaching the ground is only 2–3% lower in Moscow due to the pollution effects, though in some situations the attenuation can reach 13% in visible and more than 20% in UV spectral region.


MAUSAM ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 85-90
Author(s):  
A. MUGRAPAN ◽  
SUBBARAYAN SIVAPRAKASAN ◽  
S. MOHAN

The objective of this study is to evaluate the performance of the Hargreaves’ Radiation formula in estimating daily solar radiation for an Indian coastal location namely Annamalainagar in Tamilnadu State. Daily solar radiation by Hargreaves’ Radiation formula was computed using the observed data of maximum temperature, Tmax and minimum temperature, Tmin, sourced from the India Meteorological Observatory located at Annamalainagar and employing the adjustment coefficient KRS of 0.19. Daily solar radiation was also computed using Angstrom-Prescott formula with the measured daily sunshine hour data. The differences between the daily solar radiation values computed using the formulae were more pronounced in year around. Hence, the adjustment coefficient KRS is calibrated for the study location under consideration so that the calibrated KRS could be used to better predict daily solar radiation and hence better estimation of reference evapotranspiration.


Author(s):  
Natalia Chubarova ◽  
Yekaterina Zhdanova ◽  
Yelizaveta Androsova ◽  
Alexander Kirsanov ◽  
Marina Shatunova ◽  
...  

The monograph is devoted to the study of atmospheric aerosol and its dynamics in the urban environment of Moscow megacity. Based on the AeroRadCity 2018-2019 complex experiment, composed of measurement campaign and numerical experiments using the COSMO-ART chemical transport model, a number of new results were obtained, which contributed to a deeper understanding of the gas-aerosol composition of the urban atmosphere, wet aerosol deposition with accounting of geochemical processes and aerosol radiative effects. Aerosol pollution in the Moscow region and its dynamics in the 21st century were estimated according to the aerosol retrievals using the MAIAC algorithm developed for the MODIS satellite instrument, and long-term AERONET measurements. The effects of aerosol on meteorological and radiative characteristics of the atmosphere were obtained from the numerical experiments with the COSMO model and long-term observations. The indirect aerosol effects on cloud characteristics and weather forecast were estimated.


2010 ◽  
Vol 10 (23) ◽  
pp. 11805-11821 ◽  
Author(s):  
E. Katragkou ◽  
P. Zanis ◽  
I. Tegoulias ◽  
D. Melas ◽  
I. Kioutsioukis ◽  
...  

Abstract. Regional climate-air quality decadal simulations over Europe were carried out with the RegCM3/CAMx modeling system for the time slice 1991–2000, in order to study the impact of different meteorological forcing on surface ozone. The RegCM3 regional climate model was firstly constrained by the ERA40 reanalysis dataset which is considered as an experiment with perfect meteorological boundary conditions and then it was constrained by the global circulation model ECHAM5. A number of meteorological parameters were examined including the 500 mb geopotential height, solar radiation, temperature, cloud liquid water path, planetary boundary layer height and surface wind. The different RegCM meteorological forcing resulted in changes of near surface ozone over Europe ranging between ± 4 ppb for winter and summer. The area showing the greatest sensitivity in O3 during winter is central and southern Europe while in summer central north continental Europe. The different meteorological forcing impacts on the atmospheric circulation, which in turn affects cloudiness and solar radiation, temperature, wind patterns and the meteorology depended biogenic emissions. For comparison reasons, the impact of chemical boundary conditions on surface ozone was additionally examined with a series of sensitivity studies, indicating that surface ozone changes are comparable to those caused by the different meteorological forcing. These findings suggest that, when it comes to regional climate-air quality simulations, the selection of external meteorological forcing can be as important as the selection of adequate chemical lateral boundary conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Paweł Świsłowski ◽  
Zbigniew Ziembik ◽  
Małgorzata Rajfur

Mosses are one of the best bioindicators in the assessment of atmospheric aerosol pollution by heavy metals. Studies using mosses allow both short- and long-term air quality monitoring. The increasing contamination of the environment (including air) is causing a search for new, cheap and effective methods of monitoring its condition. Once such method is the use of mosses in active biomonitoring. The aim of the study was to assess the atmospheric aerosol pollution with selected heavy metals (Ni, Cu, Zn, Cd, Hg and Pb) from the smoke of fireworks used during New Year’s Eve in the years 2019/2020 and 2020/2021. In studies a biomonitoring moss-bag method with moss Pleurozium schreberi (Willd. ex Brid.) Mitt. genus Pleurozium was used. The research was conducted in the town Prószków (5 km in south direction from Opole, opolskie voivodship, Poland). The moss was exposed 14 days before 31 December (from 17 to 30 of December), on New Year’s Eve (31 December and 1 January) and 2 weeks after the New Year (from 2–15 January). Higher concentrations of analysed elements were determined in samples exposed during New Year’s Eve. Increases in concentrations were demonstrated by analysis of the Relative Accumulation Factor (RAF). The results indicate that the use of fireworks during New Year’s Eve causes an increase in air pollution with heavy metals. In addition, it was shown that the COVID-19 induced restrictions during New Year’s Eve 2020 resulted in a reduction of heavy metal content in moss samples and thus in lower atmospheric aerosol pollution with these analytes. The study confirmed moss usefulness in monitoring of atmospheric aerosol pollution from point sources.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Arun Kumar Shrestha ◽  
Arati Thapa ◽  
Hima Gautam

Monitoring and prediction of the climatic phenomenon are of keen interest in recent years because it has great influence in the lives of people and their environments. This paper is aimed at reporting the variation of daily and monthly solar radiation, air temperature, relative humidity (RH), and dew point over the year of 2013 based on the data obtained from the weather station situated in Damak, Nepal. The result shows that on a clear day, the variation of solar radiation and RH follows the Gaussian function in which the first one has an upward trend and the second one has a downward trend. However, the change in air temperature satisfies the sine function. The dew point temperature shows somewhat complex behavior. Monthly variation of solar radiation, air temperature, and dew point shows a similar pattern, lower at winter and higher in summer. Maximum solar radiation (331 Wm-2) was observed in May and minimum (170 Wm-2) in December. Air temperature and dew point had the highest value from June to September nearly at 29°C and 25°C, respectively. The lowest value of the relative humidity (55.4%) in April indicates the driest month of the year. Dew point was also calculated from the actual readings of air temperature and relative humidity using the online calculator, and the calculated value showed the exact linear relationship with the observed value. The diurnal and nocturnal temperature of each month showed that temperature difference was relatively lower (less than 10°C) at summer rather than in winter.


2011 ◽  
Vol 57 (202) ◽  
pp. 367-381 ◽  
Author(s):  
Francesca Pellicciotti ◽  
Thomas Raschle ◽  
Thomas Huerlimann ◽  
Marco Carenzo ◽  
Paolo Burlando

AbstractWe explore the robustness and transferability of parameterizations of cloud radiative forcing used in glacier melt models at two sites in the Swiss Alps. We also look at the rationale behind some of the most commonly used approaches, and explore the relationship between cloud transmittance and several standard meteorological variables. The 2 m air-temperature diurnal range is the best predictor of variations in cloud transmittance. However, linear and exponential parameterizations can only explain 30–50% of the observed variance in computed cloud transmittance factors. We examine the impact of modelled cloud transmittance factors on both solar radiation and ablation rates computed with an enhanced temperature-index model. The melt model performance decreases when modelled radiation is used, the reduction being due to an underestimation of incoming solar radiation on clear-sky days. The model works well under overcast conditions. We also seek alternatives to the use of in situ ground data. However, outputs from an atmospheric model (2.2 km horizontal resolution) do not seem to provide an alternative to the parameterizations of cloud radiative forcing based on observations of air temperature at glacier automatic weather stations. Conversely, the correct definition of overcast conditions is important.


Sign in / Sign up

Export Citation Format

Share Document