Sensitivity of hydrological fluxes and states to groundwater representation in continental scale simulations over Europe.

Author(s):  
Bibi S. Naz ◽  
Wendy Sharples ◽  
Klaus Goergen ◽  
Stefan Kollet

<p>This study explores the influence of groundwater representation on soil moisture, evapotranspiration, total water storage, water table depth and groundwater recharge/discharge through the comparison of multi-model simulations using the stand-alone Community Land Model (CLM3.5) and the ParFlow hydrologic model. ParFlow simulates three-dimensional variably saturated groundwater flow solving Richards equation and overland flow with a two-dimensional kinematic wave approximation, whereas CLM3.5 applies a simple approach to simulate groundwater recharge and discharge processes via the connection of bottom soil layer and an unconfined aquifer. Over Europe with a lateral resolution of 3km, both models were driven with the COSMO-REA6 reanalysis dataset for the time period from 1997 to 2006 at an hourly time step using the same datasets for the static input variables (such as topography, vegetation and soil properties). Evaluation against independent observations including satellite-derived and in-situ soil moisture, evapotranspiration, and total water storage datasets show that both models capture the interannual and seasonal variations well at the regional scale, however ParFlow performs better in simulating surface soil moisture in comparison with in-situ data. Moreover, juxtaposition of both models shows that simulations of water fluxes and sates in both space and time are sensitive to the differences in groundwater representation in the model. For example, simulations with ParFlow have overall wetter soil moisture than CLM, particularly in humid and cold regions and driest soil moisture in the arid and semi-arid regions. Seasonally, ParFlow simulates wetter soil moisture in winter and driest in summer than CLM model. This study helps to understand and quantify uncertainties in groundwater related processes in hydrologic simulations and resulting implications for water resources assessment at regional to continental scales.</p>

2020 ◽  
Author(s):  
Bibi S Naz ◽  
Wendy Sharples ◽  
Klaus Goergen ◽  
Stefan Kollet

<p> <span>High-resolution large-scale predictions of hydrologic states and fluxes are important for many regional-scale applications and water resource management. However, because of uncertainties related to forcing data, model structural errors arising from simplified representations of hydrological processes or uncertain model parameters, model simulations remain uncertain. To quantify this uncertainty, multi-model simulations were performed at 3km resolution over the European continent using the Community Land Model (CLM3.5) and the ParFlow hydrologic model. While Parflow uses a similar approach as CLM in simulating the snow, vegetation and land-atmosphere exchange processes, it simulates three-dimensional variably saturated groundwater flow solving Richards equation and overland flow with a two-dimensional kinematic wave approximation. </span><span>The </span><span>CLM</span><span>3.5</span><span> uses a simple groundwater model to account for groundwater recharge and discharge processes. Both models were driven with the COSMO-REA6 reanalysis dataset at 6km resolution for the time period from 2000 to 2006 at an hourly time step, and both used the same datasets for the static input variables (such as topography, vegetation and soil properties). The performance of both models was analyzed through comparisons with independent observations including satellite-derived and in-situ soil moisture, evapotranspiration, river discharge, water table depth and total water storage datasets. Overall, both models capture the interannual variability in the hydrologic states and fluxes well, however differences in performance between models showed the uncertainty associated with the representation of hydrological processes, such as groundwater flow and soil moisture and its control on latent and sensible heat fluxes at the surface.</span></p>


2015 ◽  
Vol 17 (1) ◽  
pp. 287-307 ◽  
Author(s):  
Oldrich Rakovec ◽  
Rohini Kumar ◽  
Juliane Mai ◽  
Matthias Cuntz ◽  
Stephan Thober ◽  
...  

Abstract Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by total water storage anomaly, and the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to account for other complementary datasets besides streamflow during parameter estimation to improve model skill with respect to “hidden” variables.


2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


2012 ◽  
Vol 16 (9) ◽  
pp. 3083-3099 ◽  
Author(s):  
H. Xie ◽  
L. Longuevergne ◽  
C. Ringler ◽  
B. R. Scanlon

Abstract. Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability in water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrologic model based on the Soil and Water Assessment Tool (SWAT) code for basins in Sub-Saharan Africa using seven-year (July 2002–April 2009) 10-day GRACE data and multi-site river discharge data. The analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimising model parameters with respect to two non-commensurable criteria defined for two fluxes, SWAT was found to perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, water storage variations in soil, vadose zone and groundwater are dominant. The study also showed that the simulated total water storage variations tend to have less agreement with GRACE data in arid and equatorial humid regions, and model-based partitioning of total water storage variations into different water storage compartments may be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations.


2018 ◽  
Vol 145 ◽  
pp. 03011
Author(s):  
Olga Nitcheva ◽  
Borislav Milev ◽  
Tanya Trenkova ◽  
Nina Philipova ◽  
Polya Dobreva

Estimating groundwater recharge is an important part of the water resources evaluation. In spite of the numerous existing methods it continues to be not easy value to quantify. This is due to its dependence on many meteorological, hydrogeological, soil type and cover conditions and the impossibility for direct measurement. Employment of hydrological models in fact directly calculates the influence of the above cited natural factors. The Community Land Model (CLM3) being loaded with all land featuring data in global scale, including an adequate soil filtration process simulation by the Richards equation, together with the possibility for input of NCEP/NCAR Reanalyses database, featuring the meteorological effect, gives an opportunity to avoid to great extent the difficulties in groundwater (GW) recharge estimation. The paper presents the results from an experiment concerning GW recharge monthly estimation during 2013, worked out for the Kamchia river watershed in Bulgaria. The computed monthly and annual values are presented on GIS maps and are compared with existing assessments made by other methods. It is proved the good approach and the applicability of the method.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


2017 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS) providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of ΔTWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of GRACE ΔTWS signals from 5 commonly-used gridded products (i.e., NASA's GRCTellus: CSR, JPL GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil-moisture from the Global Land Data Assimilation System (GLDAS). The focus of this analysis is a large and accurately observed reduction in ΔTWS of 75 km3 from 2004 to 2006 in Lake Victoria in the Upper Nile Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 68 km3 (GRGS) to 50 km3 and 26 km3 for JPL-Mascons and GRCTellus, respectively. Representation of the phase in ΔTWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons and GRCTellus (ensemble mean of CSR, JPL and GFZ time-series data) explaining 91 %, 85 %, and 77 % of the variance, respectively, in in-situ ΔTWS. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in modelled changes in soil-moisture storage (ΔSMS) and the low annual amplitudes in ΔGWS (e.g., 3.5 to 4.4 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products.


2019 ◽  
Vol 23 (1) ◽  
pp. 277-301 ◽  
Author(s):  
Bibi S. Naz ◽  
Wolfgang Kurtz ◽  
Carsten Montzka ◽  
Wendy Sharples ◽  
Klaus Goergen ◽  
...  

Abstract. Accurate and reliable hydrologic simulations are important for many applications such as water resources management, future water availability projections and predictions of extreme events. However, the accuracy of water balance estimates is limited by the lack of large-scale observations, model simulation uncertainties and biases related to errors in model structure and uncertain inputs (e.g., hydrologic parameters and atmospheric forcings). The availability of long-term and global remotely sensed soil moisture offers the opportunity to improve model estimates through data assimilation with complete spatiotemporal coverage. In this study, we assimilated the European Space Agency (ESA) Climate Change Initiative (CCI) derived soil moisture (SM) information to improve the estimation of continental-scale soil moisture and runoff. The assimilation experiment was conducted over a time period 2000–2006 with the Community Land Model, version 3.5 (CLM3.5), integrated with the Parallel Data Assimilation Framework (PDAF) at a spatial resolution of 0.0275∘ (∼3 km) over Europe. The model was forced with the high-resolution reanalysis COSMO-REA6 from the Hans Ertel Centre for Weather Research (HErZ). The performance of assimilation was assessed against open-loop model simulations and cross-validated with independent ESA CCI-derived soil moisture (CCI-SM) and gridded runoff observations. Our results showed improved estimates of soil moisture, particularly in the summer and autumn seasons when cross-validated with independent CCI-SM observations. The assimilation experiment results also showed overall improvements in runoff, although some regions were degraded, especially in central Europe. The results demonstrated the potential of assimilating satellite soil moisture observations to produce downscaled and improved high-resolution soil moisture and runoff simulations at the continental scale, which is useful for water resources assessment and monitoring.


2019 ◽  
Vol 11 (3) ◽  
pp. 335 ◽  
Author(s):  
Kishore Pangaluru ◽  
Isabella Velicogna ◽  
Geruo A ◽  
Yara Mohajerani ◽  
Enrico Ciracì ◽  
...  

This study investigates the spatial and temporal variability of the soil moisture in India using Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) gridded datasets from June 2002 to April 2017. Significant relationships between soil moisture and different land surface–atmosphere fields (Precipitation, surface air temperature, total cloud cover, and total water storage) were studied, using maximum covariance analysis (MCA) to extract dominant interactions that maximize the covariance between two fields. The first leading mode of MCA explained 56%, 87%, 81%, and 79% of the squared covariance function (SCF) between soil moisture with precipitation (PR), surface air temperature (TEM), total cloud count (TCC), and total water storage (TWS), respectively, with correlation coefficients of 0.65, −0.72, 0.71, and 0.62. Furthermore, the covariance analysis of total water storage showed contrasting patterns with soil moisture, especially over northwest, northeast, and west coast regions. In addition, the spatial distribution of seasonal and annual trends of soil moisture in India was estimated using a robust regression technique for the very first time. For most regions in India, significant positive trends were noticed in all seasons. Meanwhile, a small negative trend was observed over southern India. The monthly mean value of AMSR soil moisture trend revealed a significant positive trend, at about 0.0158 cm3/cm3 per decade during the period ranging from 2002 to 2017.


2019 ◽  
Vol 11 (24) ◽  
pp. 2949 ◽  
Author(s):  
Justyna Śliwińska ◽  
Monika Birylo ◽  
Zofia Rzepecka ◽  
Jolanta Nastula

The Gravity Recovery and Climate Experiment (GRACE) observations have provided global observations of total water storage (TWS) changes at monthly intervals for over 15 years, which can be useful for estimating changes in GWS after extracting other water storage components. In this study, we analyzed the TWS and groundwater storage (GWS) variations of the main Polish basins, the Vistula and the Odra, using GRACE observations, in-situ data, GLDAS (Global Land Data Assimilation System) hydrological models, and CMIP5 (the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 5) climate data. The research was conducted for the period between September 2006 and October 2015. The TWS data were taken directly from GRACE measurements and also computed from four GLDAS (VIC, CLM, MOSAIC, and NOAH) and six CMIP5 (FGOALS-g2, GFDL-ESM2G, GISS-E2-H, inmcm4, MIROC5, and MPI-ESM-LR) models. The GWS data were obtained by subtracting the model TWS from the GRACE TWS. The resulting GWS values were compared with in-situ well measurements calibrated using porosity coefficients. For each time series, the trends, spectra, amplitudes, and seasonal components were computed and analyzed. The results suggest that in Poland there has been generally no major TWS or GWS depletion. Our results indicate that when comparing TWS values, better compliance with GRACE data was obtained for GLDAS than for CMIP5 models. However, the GWS analysis showed better consistency of climate models with the well results. The results can contribute toward selection of an appropriate model that, in combination with global GRACE observations, would provide information on groundwater changes in regions with limited or inaccurate ground measurements.


Sign in / Sign up

Export Citation Format

Share Document