Critical trigger condition of seabed liquefaction under ocean waves

Author(s):  
Cheng-Jung Hsu ◽  
Ching Hung

<p>Soil liquefaction in seabed not only drives vertical sediment transportation but also weakens coastal infrastructures such as pipeline or underwater foundation. The damage of seabed liquefaction events had been documented in literature. Due to the threat to lives and environment, it is important to have an exhaustive analysis on the risk assessment of seabed liquefaction subjected to ocean waves. The objective of this study is to assess the critical wave condition triggering seabed liquefaction in oceanic environment through theoretical modelling. Our investigation focused on the wave condition of momentary liquefaction induced by periodic wave loading. The scenario considers a permeable seabed on which a wide range of ocean waves propagates, and the critical wave parameters of wave height and wavelength causing liquefaction are examined. A two-dimensional analytical solution of seabed response based on Biot’s consolidation theory is applied with nonlinear water wave theory to predict the soil response and the consequence of liquefaction.  In contrast to the previous studies of seabed response applying the analytical solutions which only valid for a restricted wave range, we use a numerical approach of finite-amplitude wave to reflect the nonlinearity effect in a wide range of water wave from deep water to shallow water.  The present assessment of liquefaction is compared with the extant solution of seabed response under Stokes wave and cnoidal wave for validation. In additional, the potential of liquefaction instability is performed by a critical curve of wave condition covering the range of ocean waves from deep water to shallow water. Our study provides advanced theoretical framework and robust mathematical model for the assessment of wave-induced seabed instability under water waves, and the detailed analysis sheds insight into the impact of ocean waves on the seabed liquefaction.</p>

Author(s):  
Igor Shugan ◽  
Sergei Kuznetsov ◽  
Yana Saprykina ◽  
Yang-Yih Chen

Abstract The possibility of self-acceleration of the water-wave pulse with a permanent envelope in the form of the nonlinear Airy function during its long propagation in deep water is experimentally and theoretically analyzed. This wave packet has amazing properties — accelerates without any external force, and preserves shape in a dispersive medium. The inverted Airy envelope wave function can propagate at velocity that is faster than the group velocity. We experimentally study the behavior of Airy water-wave pulses in a super-tank and long scaled propagation, to investigate its main properties, nonlinear effects and stability. Theoretical modeling analysis is based on the nonlinear Schrodinger equation. We investigate the scope of applicability, feasibility and stability conditions of nonlinear Airy wave trains in the deep water conditions; defining regimes of self-acceleration of the main pulse, immutability shape of Airy envelope; assessing the impact of nonlinearity and dissipation on the propagation of Airy waves. We analyzed the influence of the initial pulse characteristics on self-acceleration of wave packet and the stability of the envelope form. The anticipated results allow extending the physical understanding of the evolution of nonlinear dispersive waves in a wide range of initial conditions and at different spatial and temporal scales, from both theoretical and experimental points of view. Steep waves start to become an unstable, we observe spectrum widening and downshifting. Wave propagation is accompained by the intensive wave breaking and the generation of water-wave solitons.


1991 ◽  
Vol 113 (3) ◽  
pp. 219-227 ◽  
Author(s):  
A. Cornett ◽  
M. D. Miles

This paper describes the generation and verification of four realistic sea states in a multidirectional wave basin, each representing a different storm wave condition in the Gulf of Mexico. In all cases, the degree of wave spreading and the mean direction of wave propagation are strongly dependent on frequency. Two of these sea states represent generic design wave conditions typical of hurricanes and winter storms and are defined by JONSWAP wave spectra and parametric spreading functions. Two additional sea states, representing the specific wave activity during hurricanes Betsy and Carmen, are defined by tabulated hindcast estimates of the directional wave energy spectrum. The Maximum Entropy Method (MEM) of directional wave analysis paired with a single-wave probe/ bi-directional current meter sensor is found to be the most satisfactory method to measure multidirectional seas in a wave basin over a wide range of wave conditions. The accuracy of the wave generation and analysis process is verified using residual directional spectra and numerically synthesized signals to supplement those measured in the basin. Reasons for discrepancy between the measured and target directional wave spectra are explored. By attempting to reproduce such challenging sea states, much has been learned about the limitations of simulating real ocean waves in a multidirectional wave basin, and about techniques which can be used to minimize the associated distortions to the directional spectrum.


Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction of the main wind direction can make any direction with the current. Numerical results showing the importance of the water depth, the directional spreading and the current on the conditional mean wave profile and the associated wave kinematics are presented. A discussion of the use of the conditional wave approach as design waves is given.


Author(s):  
Patrick Lynett ◽  
Philip L.-F. Liu ◽  
Hwung-Hweng Hwung ◽  
Wen-Son Ching

A set of model equations for water wave propagation is derived by piecewise integration of the primitive equations of motion through N arbitrary layers. Within each layer, an independent velocity profile is determined. With N separate velocity profiles, matched at the interfaces of the layers, the resulting set of equations have N+1 free parameters, allowing for an optimization with known analytical properties of water waves. The optimized two-layer model equations show good linear wave characteristics up to kh ≈8, while the second-order nonlinear behavior is well captured to kh ≈6. The three-layer model shows good linear accuracy to kh ≈14, and the four layer to kh ≈20. A numerical algorithm for solving the model equations is developed and tested against nonlinear deep-water wave-group experiments, where the kh of the carrier wave in deep water is around 6. The experiments are set up such that the wave groups, initially in deep water, propagate up a constant slope until reaching shallow water. The overall comparison between the multi-layer model and the experiment is quite good, indicating that the multi-layer theory has good nonlinear, as well has linear, accuracy for deep-water waves.


Author(s):  
Dag Myrhaug ◽  
Pierre-Yves Henry

This article addresses the random wave energy dissipation due to submerged aquatic plants in shallow water based on deep water wave conditions including estimation of wave damping. The motivation is to provide a simple engineering tool suitable to use when assessing random wave damping due to small patches of plants in shallow water. Examples of application for typical field conditions are provided. The present method versus common practice is discussed. A possible application of the outcome of this study is that it can be used as a parameterization of wave energy dissipation due to vegetation patches of limited size in operational estuarine and coastal circulation models.


2020 ◽  
Author(s):  
Yuri Konovalov

<p>The propagation of high-frequency elastic-flexural waves through an ice shelf was modeled by a full 3-D elastic model, which also takes into account sub-ice seawater flow. The sea water flow is described by the wave equation. Numerical experiments were undertaken both for an intact ice shelf free of crevasses, which has idealized rectangular geometry, and for a crevasse-ridden ice shelf. The crevasses were modeled as triangle/rectangular notches into the ice shelf. The obtained dispersion spectra (the dispersion curves describing the wavenumber/periodicity relation) are not continuous. The spectra reveal gaps that provide the transition from n-th mode to (n+1)-th mode. These gaps are observed both for an intact ice shelf free of crevasses and for a crevasse-ridden ice shelf. They are aligned with the minimums in the amplitude spectrum. That is the ice shelf essentially blocks the impact wave at this transition. However, the dispersion spectrum obtained for a crevasse-ridden ice shelf, has a qualitatively difference from that obtained for an intact ice shelf free of crevasses. Moreover, the dispersion spectrum obtained for a crevasse-ridden ice shelf reveals the band gap – the zone there no eigenmodes exist (Freed-Brown and others, 2012). The numerical experiments with the crevasse-ridden ice tongue that is 16 km in longitudinal extent, 0.8km width and 100m thick, were undertaken for a wide range of the periodicities of the incident wave: from 5 s to 250 s. The obtained dispersion spectra reveal two band gaps in this range: the first band gap at about 20 s and the second band gap at about 7 s for 1km spatial periodicity of the crevasses. The width of the band gap significantly increases when the crevasses depth increases too. Respectively, the amplitude spectra reveal significantly increasing area of periodicities/frequencies where the ice shelf blocks the impact wave.</p><p><strong>References</strong></p><p>Freed-Brown, J., Amundson, J., MacAyeal, D., & Zhang, W. (2012). Blocking a wave: Frequency band gaps in ice shelves with periodic crevasses. Annals of Glaciology, 53(60), 85-89. doi:10.3189/2012AoG60A120</p><p>Konovalov, Y.V. (2019). Ice-shelf vibrations modeled by a full 3-D elastic model. Annals of Glaciology, 1-7. doi:10.1017/aog.2019.9</p>


2013 ◽  
Vol 47 (5) ◽  
pp. 104-116 ◽  
Author(s):  
Mark E. Luther ◽  
Guy Meadows ◽  
Earle Buckley ◽  
Sherryl A. Gilbert ◽  
Heidi Purcell ◽  
...  

AbstractGiven the societal importance of reliable and accurate ocean observations, the wave monitoring community (including academic researchers, agency scientists, resource managers, and representatives from wave instrument manufacturers) came together to develop a set of protocols for the test and evaluation of wave measurement systems in support of the 2009 National Operational Wave Observation Plan. These protocols are focused on a wide range of wave measurement instruments and their respective performance in successfully recovering the “First-5” Fourier components of the incident wave field. Performance is determined by comparing each system’s output with a verifiable reference method over a predetermined range of wave frequencies. It is recommended that permanent wave test facilities are created on the West Coast (Monterey Bay, CA—deep water) and the East Coast (Duck, NC—shallow water) for continued evaluations of existing and new technologies. It was recognized that no absolute standard exists for the determination of the “First-5” across all spatial domains. Therefore, it was agreed that the Directional Waverider DWR-MkIII system was the best available reference/standard for the deep and intermediate water wave evaluations as verified by the laser array (LASAR) at the ConocoPhillips Ekofisk offshore platform complex in the North Sea. The long linear array at the U.S. Army Corps of Engineers’ Field Research Facility could be used as the standard for shallow water wave evaluations. Finally, given the significance of wave measurements, an appropriate level of quality assurance and quality control procedures must be included as part of any test and evaluation effort. The details of the proposed protocols for the verification of wave measurement systems are described.


Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile. Extensions to higher order waves are finally discussed.


2020 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Ladislav Illes ◽  
Tomas Kalina ◽  
Martin Jurkovic ◽  
Vladimir Luptak

The aim of this study was to investigate the impact of distributed propulsion systems used on inland and coastal navigation in shallow water. Five layouts were assessed by computational fluid dynamics (CFD) simulation. The hull/propulsion layout cases have been analyzed for discrete flow speed values in the range 0–6 m/s. All cases have been examined under restricted draft conditions in shallow water with a minimum of 0.3 m under keel clearance (UKC) and under unrestricted draft conditions in deep water. The results show that distributed propulsion consisting of 6 or 8 (in some cases, even more) units produces noticeable higher thrust effects in shallow water than the traditional layout. Under restricted conditions, the thrust increase between two distributed layouts with different numbers of propulsors is higher, in contrast to deep water, where differences in performance are not so significant.


Author(s):  
Rasoul Hejazi ◽  
Andrew Grime ◽  
Mark Randolph ◽  
Mike Efthymiou

Abstract Large diameter steel catenary risers (SCRs) are considered a cost efficient export riser solution for gas field developments at deep-water sites. However, SCRs are prone to fatigue damage at their interface with the seabed (the touchdown zone, TDZ) and hence accurate estimation of their fatigue life is crucial. The major source of TDZ fatigue damage is the motions of the host vessel subjected to irregular ocean waves. The first-order interaction between the host vessel and the ocean causes oscillations in all degrees of freedom at the same frequencies as the incident waves. The second-order interactions result in a mean-drift offset from the static equilibrium position in the horizontal plane and slowly-varying cyclic motions about that offset position. This paper investigates the effects of second order motions on the fatigue life of a 26” SCR connected to a representative Floating Production Storage and Offload vessel (FPSO), using realistic environmental conditions relevant for a deep-water site on the Australian Northwest Shelf. A diffraction analysis was performed to obtain the hydrodynamic characteristics of the ship-shaped vessel which was subsequently used as the input into a fully coupled response model consisting of the floater, mooring lines and the SCR. A realistic fatigue wave scatter diagram was adopted, consisting of 100 sea-states combining irregular seas, swell, current and winds. This was combined with dynamic time-domain motion analysis and a rainflow cycle counting algorithm in order to determine the fatigue damage within the SCR TDZ due to the host FPSO motions. The results shows that for this representative system the second-order cyclic low frequency (LF) motions have beneficial impacts on fatigue life of the large diameter SCR. Similarly, mean-offsets of the FPSO have a beneficial effect due to changes in the fatigue hotspot location along the SCR within the TDZ for each sea-state. Finally, a simplified method is presented to capture these beneficial effects at the early design stages.


Sign in / Sign up

Export Citation Format

Share Document