Modelling of overland flows in a terraced vineyard affected by road-induced shallow landslides 

Author(s):  
Luca Mauri ◽  
Eugenio Straffelini ◽  
Paolo Tarolli

<p>Land degradation represents one the main issue affecting agricultural systems, especially in those areas that are characterized by agricultural practices on steep hillslopes. The occurrence of erosion processes and landslides is closely linked with the presence of road networks. Factors like inefficient of absent drainage systems, wasteful road management and not optimal planning, as well as specific geomorphological and hydrological elements directly encourage landslides activation. In this connection, the combined use of Remotely Piloted Aircraft Systems (RPAS) and photogrammetric techniques (e.g. Structure from Motion; SfM) allowed to elaborate multi-temporal (therefore 4D) high-resolution Digital Elevation Models (DEMs), so as to detect geomorphological changes affecting earth surface at specific spatial and temporal scale. At the same time, the adoption of several models allows to compute specific hydrological analysis, for instance investigating the alteration of surface water flow dynamics due to the presence of specific features like roads. In this context, this research aims to propose a multi-temporal analysis of the road-induced water flow alterations in a shallow landslide-prone agricultural system. SIMWE model (Mitasova et al., 2013) was applied focusing on different geomorphic and rainfall scenarios, looking at the presence of the road network within the study area and assuming its absence through specific DEM post-processing procedures. In this connection, the possibility to perform multi-temporal hydrological simulations at the hillslope scale, to analyse the role played by the road in landslides activation is still a challenge to be investigated. In this article, we considered a case study placed in northern Italy, where two shallow landslides were observed below a rural road located within a terraced vineyard. Multi-temporal hydrological simulations were conducted to further analyse the evolution of road induced water flows deviations, thus stimulating landslides occurrence on the detected hillslopes. Maximum water depths equal to 0.60 m and 0.46 m were noticed close to specific zones of the road sections located above the first and the second landslide respectively. The simulations computed assuming the absence of the road revealed the lack of water flows deviations involving the landslide zones, underlining the fact that the road absence would avoid significant changes in water flow paths toward the collapsed zones. The key role played by the road in water flows deviation and in the evolution of the observed land degradation dynamics was attested through the comparison of the thematic maps resulted from each simulation. This work could be a solid starting point for further analyse the roads impact on runoff dynamics at a wider scale, aiming to plan and propose mitigation interventions so as to reduce the occurrence of future risk scenarios. At the same time, efficient design of drainage systems along the roadway could be conducted starting from the outcomes presented in our research, so as to prevent the activation of similar land degradation processes.</p><p><br><strong>Reference<br></strong>Mitasova H., Barton C.M., Ullah I., Hofierka J., Harmon R.S. 2013. GIS-Based Soil Erosion Modeling. Treatise on Geomorphology (3), 228-258.</p>

2021 ◽  
Author(s):  
Luca Mauri ◽  
Eugenio Straffelini ◽  
Sara Cucchiaro ◽  
Paolo Tarolli

<p>The presence of roads is closely linked with the activation of land degradative phenomena such as landslides. Factors such as ineffective road management and design, local rainfall regimes and specific geomorphological elements actively influence landslides occurrence. In this context, recent developments in digital photogrammetry (e.g. Structure from Motion; SfM) paired with Remotely Piloted Aircraft Systems (RPAS) increase our possibilities to realize low-cost and recurrent topographic surveys. This allows the realization of multi-temporal (hereafter 4D) and high-resolution Digital Elevation Models (DEMs), fundamental to analyse geomorphological features and quantify processes at the fine spatial and temporal resolutions at which they occur. In this research is presented a 4D comparison of geomorphological indicators describing a landslide-prone agricultural system, so as to detect the noticed high-steep slope failures. The possibility to analyse the evolution of landslide geomorphic features in steep agricultural systems through high-resolution and 4D comparison of such indicators is still a challenge to be investigated. In this research, we considered a case study located in the central Italian Alps, where two shallow landslides (L1, L2) were activated below a rural road within a terraced vineyard. The dynamics of the landslides were monitored through the comparison of repeated DEMs (DEM of Difference, i.e. DoD), that reported erosion values of above 20 m<sup>3</sup> and 10 m<sup>3</sup> for the two landslides zones and deposition values of more than 15 m<sup>3</sup> and 9 m<sup>3</sup> respectively. The elaboration of Relative Path Impact Index (RPII) highlighted the role played by the road in the alteration of surface water flow directions. Altered water flows were expressed by values between 2σ and 4σ of RPII close to the collapsed surfaces. The increasing of profile curvature and roughness index described landslides evolution over time. Finally, the multi-temporal comparison of features extraction underlined the geomorphological changes affecting the study area. The computation of the quality index underlined the accuracy of features extraction. This index is expressed in a range between 0 (low accuracy) and 1 (high accuracy) and resulted equal to 0.22 m, regarding the landslide observed during the first RPAS survey (L1-pre); 0.63 m, concerning the same landslide detected during the second RPAS survey (L1-post); 0.69 m for L2. Results prove the usefulness of high-resolution and 4D RPAS-based SfM surveys for the investigation of landslides triggering due to the presence of roads at hillslope scale in agricultural systems. This work could be a useful starting point for further studies of landslide-susceptible zones at a wider scale, to preserve the quality and the productivity of affected agricultural areas.</p>


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Luca Mauri ◽  
Eugenio Straffelini ◽  
Sara Cucchiaro ◽  
Paolo Tarolli

The presence of roads is closely linked with the activation of land degradative phenomena such as landslides. Factors such as ineffective road management and design, local rainfall regimes, and specific geomorphological elements actively influence landslide occurrence. In this context, recent developments in digital photogrammetry (e.g., Structure from Motion; SfM) paired with Uncrewed Aerial Vehicles (UAV) systems increase our possibilities to realize low-cost and recurrent topographic surveys. This can lead to the development of multi-temporal (hereafter: 4D) and high-resolution Digital Elevation Models (DEMs), which are fundamental to analyse geomorphological features and quantify processes at the fine spatial and temporal resolutions at which they occur. This research proposes a multi-temporal comparison of the main geomorphometric indicators describing a landslide-prone terraced vineyard to assess the observed high-steep slope failures. The possibility to investigate the evolution of landslide geomorphic features in steep agricultural systems through a high-resolution and 4D comparison of such indicators is still a challenge to be explored. In this article, we considered a case study located in the central Italian Alps, where two landslides were activated below a rural road within a terraced agricultural system. The dynamics of the landslides were monitored by comparing repeated DEMs (DEM of difference), which reported erosion values of above 20 m3 and 10 m3 for the two landslide zones and deposition values of more than 15 m3 and 9 m3, respectively. The road network’s role in the alteration of superficial water flows was proved by the elaboration of the relative path impact index. Altered water flows were expressed by values between 2σ and 4σ close to the collapsed surfaces. The increase in profile curvature and roughness index described the landslides evolution over time. Finally, the multi-temporal comparison of feature extraction underlined the geomorphological changes affecting the study area. The accuracy of features extraction was analysed through the quality index computation, expressed in a range between 0 (low accuracy) and 1 (high accuracy), and proved to be equal to 0.22 m (L1-pre), 0.63 m (L1-post), and 0.69 m (L2). Results confirmed the usefulness of high-resolution and 4D UAV-based SfM surveys to investigate landslides triggering due to the presence of roads at hillslope scale in agricultural systems. This work could be a useful starting point for further studies of landslide- susceptible zones on a wider scale to preserve the quality and the productivity of affected agricultural areas.


Author(s):  
Roumen Gadjev

The water flows for surface irrigation processes are determined by the amelioration and agronomic condition of the irrigated cultures and the physical-and-mechanical parameters of the soil. The state of erosion process occurs at the boundary between the soil’s resistance forces and the flow’s velocities and their hydraulic forces. This condition is most often expressed in terms of the time-averaged velocities which are not real in each points of cross section of the water flow. The real velocities which cause erosion are pulsation velocities into the water flow and they are irregularly variable, with varying repetition and magnitude. Based on analytical studies, there is established and offered a range of the optimal probability values of these pulsation velocities for which the soil has adequate safety against erosion for the applicable flow velocities.


2019 ◽  
Vol 48 (3) ◽  
pp. 35-41
Author(s):  
Plamen Ivanov ◽  
Rosen Nankin ◽  
Miroslav Krastanov

The study covers the coastal slope in the Zelenka locality (northern Bulgarian Black Sea coast). This is a beautiful but also dangerous area due to constant sloping and falling of huge blocks of land on the shore. The slope is composed of Miocene sediments: diatomaceous clays (Euxinograd Formation), unconsolidated aragonite sediments with limestone interbeds (Topola Formation), and a steep limestone rock crown (Karvuna Formation). An assessment of the material eroded from the slope, composed of aragonite sediments of the Topola Formation, for the period from October 2018 to March 2019 was made. The quantities of this material were measured and laboratory tests were carried out on the aragonite sediments. The grain size and plasticity (classification characteristics) of the soil were determined. The surface of the slope is waterlogged (or wet), as water flows down the slope of the contact formed between the Topola and Karvuna formations. The geotechnical studies and mapping of the coastal slope revealed that the erosion processes can affect not only the slope stability, but also of the road integrity, and therefore may pose a real geological risk.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 100
Author(s):  
Ramón Carpena ◽  
Joaquín Tovar-Pescador ◽  
Mario Sánchez-Gómez ◽  
Julio Calero ◽  
Israel Mellado ◽  
...  

Rainfall thresholds are one of the most widely applied methods for indirectly estimating landslide return periods, which are subsequently used in hazard analyses. In this study, the starting point is an incidence database of landslides and erosive processes affecting the road network of the province of Jaén (southern Spain), in which the positions and dates of civil repair works can be found. Meanwhile, the use of a daily rainfall database in a dense grid (1 km) allowed for the estimation of the rainfall series at each incidence point with high precision. Considering the news in the local media and applying spatial proximity, temporal proximity, and maximum return period criteria, rainfall events of various duration (1 to 90 days) could be associated approximately with each point. Then, the rainfall thresholds and their return periods were estimated. A linear equation was adjusted for the rainfall duration threshold (E = 6.408 D + 74.829), and a power-law curve was adjusted for the intensity–duration pair (I = 47.961 D−0.458). Non-significant differences were observed between the thresholds and the return periods for the lower and higher magnitude incidences, but the durations for the former were lower (1–13 days), compared to those of the latter (7–22 days). From the equations, rainfall events of different durations could be estimated for use in hazard analysis, as well as for the future development of warning systems.


2020 ◽  
Vol 10 (2) ◽  
pp. 420-442
Author(s):  
Dina Ghazzawi ◽  
Lyle McKinney ◽  
Catherine Lynn Horn ◽  
Vincent Carales ◽  
Andrea Burridge

International students are increasingly enrolling in U.S community colleges as a starting point to their higher education. However, limited research examines the factors contributing to their successful transfer to a 4-year institution and bachelor degree attainment. Utilizing longitudinal transcript data from a large community college district in Texas, this study uses hierarchical logistical regression to compare college experiences and transfer outcomes based on region of origin. Findings demonstrate that while Sub-Saharan African students have a significantly higher probability of transfer than Asian and Latin American students, the majority of bachelor degree recipients were Asian students graduating in STEM fields. Delayed enrollment into college and academic preparedness in math were negatively associated with transfer for Latin American and Caribbean students.


2010 ◽  
Vol 10 (5) ◽  
pp. 831-840 ◽  
Author(s):  
Ángel De Miguel ◽  
Eloy García ◽  
Irene De Buestamante

Virtual water is defined as the water needed to produce a product. We can use virtual water flow calculations to estimate the water efficiency of a country, as well as its economic dependence on water resources. Former studies on this area have focused on quantifying the virtual water flows between countries, in an international context. In this study we reduce the action framework to regions within a country, determining the virtual water balance between two Spanish regions: Castilla-La Mancha and Murcia. In 2004, Castilla-La Mancha exported to Murcia 2,453,442 tons of commercial products, from which 1,191,628 tons were agricultural goods. In terms of virtual water, it means 1,365 hm3, including food-processing, and industrial products. It is necessary to add 350 hm3 to the result, because of the water transfer (Tajo-Segura transfer) between the rivers basins of these regions, so the final virtual water number, in 2004, was 1,715 hm3. The other way round, Murcia exported in 2004 2,069,000 tons of products, from which 490,351 tons were agricultural goods. That supposes 712 hm3 of virtual water. Virtual water flow is unbalanced and displaced towards Murcia with a difference of 1,003 hm3.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


2020 ◽  
Vol 150 ◽  
pp. 03011
Author(s):  
Husam Al-Nussairi ◽  
Khalida Hassan

In this study, the marshlands in southern Iraq were investigated, focusing on the Hawizeh Marshlands and adjacent areas, by studying the scenario and quantities of water, in addition to the hydraulic and hydrochemical characteristics. To accomplish the objects of this study the researcher visited some fields, made interview with farmers, specialists, authorities and directorates related to this study. The results of this study indicate that there are a huge problem existed in the drainage systems with absence of natural outlets, the discharges of drainage water is towards Al- Hawizeh marsh which flow back its water into Tigris river through several canals, increasing salinity, scare of water, miss-use of land, lack of governments efforts to promote agricultural production leads to loss of soil productivity and land degradation.


Sign in / Sign up

Export Citation Format

Share Document