Spectral nudging in an hourly 4DVar framework: Status and Plans

Author(s):  
Marco Milan ◽  
Adam Clayton ◽  
Andrew Lorenc ◽  
Gareth Dow ◽  
Roberts Tubbs ◽  
...  

<p>The Met Office hourly 4D-Var was introduced operationally to its convective-scale limited area model (UKV) in summer 2017, improving forecast skill for nowcasting and short-range purposes. However, in recent tests a downscaler run from a global analysis tends to be better than hourly 4D-Var, especially for some variables (e.g. screen temperature). This is probably due to a poor representation of large-scale dynamics in the LAM DA system, which is now integrated on an extended domain, whilst the global model has improved to a 10km resolution and with better DA (hybrid 4D-Var). Therefore, the MO recognises the necessity of coupling large scale dynamics with convective systems using the better estimation of these motions from the global model.<br>We opted for a solution similar to spectral nudging, which uses large scale increments derived from a model with a better representation of these scales. At the same time, the short scales from UKV are maintained. We call this method ‘Background Increments’ (BGInc), as it updates the UKV background fields using a spectrally filtered increment derived from a different (global) model. This update is calculated just prior to computing the analysis increments from the hourly DA cycle. We investigated different set-ups for the implementation, changing the cut-off wavelength, the vertical weights, the frequency of updates of BGInc and other set-up features.<br>This novel system is now in a testing phase for operational purposes. From preliminary results, the forecast is improved for about the first 12 hours for different variables. We also notice a reduction in the gravity wave activity generated when new lateral boundary conditions are introduced to the LAM from the latest global forecast. This research shows the benefits of a better representation of large-scale motions for LAM forecasts. <br>In the short term, future development involves the computation of new static covariances using a better representation of the large-scale error. In the longer term, this technique could be useful in a hybrid 4D-Var scheme while enabling the use of large-scale ensemble perturbations in the analysis without causing large adjustments at the lateral boundaries.</p>

2013 ◽  
Vol 141 (6) ◽  
pp. 1866-1883 ◽  
Author(s):  
Christina R. Holt ◽  
Istvan Szunyogh ◽  
Gyorgyi Gyarmati

Abstract This study investigates the benefits of employing a limited-area data assimilation (DA) system to enhance lower-resolution global analyses in the northwest Pacific tropical cyclone (TC) basin. Numerical experiments are carried out with a global analysis system at horizontal resolution T62 and a limited-area analysis system at resolutions from 200 to 36 km. The global and limited-area DA systems, which are both based on the local ensemble transform Kalman filter algorithm, are implemented using a unique configuration, in which the global DA system provides information about the large-scale analysis and background uncertainty to the limited-area DA system. The limited-area analyses of the storm locations are, on average, more accurate than those from the global analyses, but increasing the resolution of the limited-area system beyond 100 km has little benefit. Two factors contribute to the higher accuracy of the limited-area analyses. First, the limited-area system improves the accuracy of the location estimates for strong storms, which is introduced when the background is updated by the global assimilation. Second, it improves the accuracy of the background estimate of the storm locations for moderate and weak storms. Improvements in the steering flow analysis as a result of increased resolution are modest and short lived in the forecasts. Limited-area track forecasts are more accurate, on average, than global forecasts, independently of the strength of the storms up to five days. This forecast improvement is due to the more accurate analysis of the initial position of storms and the better representation of the interactions between the storms and their immediate environment.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 503 ◽  
Author(s):  
Karsten Peters ◽  
Cathy Hohenegger ◽  
Daniel Klocke

Representing mesoscale convective systems (MCSs) and their multi-scale interaction with the large-scale atmospheric dynamics is still a major challenge in state-of-the-art global numerical weather prediction (NWP) models. This results in potentially defective forecasts of synoptic-scale dynamics in regions of high MCS activity. Here, we quantify this error by comparing simulations performed with a very large-domain, convection-permitting NWP model to two operational global NWP models relying on parameterized convection. We use one month’s worth of daily forecasts over Western Africa and focus on land regions only. The convection-permitting model matches remarkably well the statistics of westward-propagating MCSs compared to observations, while the convection-parameterizing NWP models misrepresent them. The difference in the representation of MCSs in the different models leads to measurably different synoptic-scale forecast evolution as visible in the wind fields at both 850 and 650 hPa, resulting in forecast differences compared to the operational global NWP models. This is quantified by computing the correlation between the differences and the number of MCSs: the larger the number of MCSs, the larger the difference. This fits the expectation from theory on MCS–mean flow interaction. Here, we show that this effect is strong enough to affect daily limited-area forecasts on very large domains.


2006 ◽  
Vol 6 (5) ◽  
pp. 10217-10246
Author(s):  
H.-F. Graf ◽  
J. Yang

Abstract. A convective cloud field model (CCFM) is substituted for a standard mass flux parameterisation of convective clouds in a limited area atmospheric model (REMO) and is tested for a whole annual cycle (July 1997 to June 1998) over the Maritime Continent. REMO with CCFM is run in 0.5-degree resolution and the model at the boundaries is forced 6-hourly by ECMWF reanalysis data. Simulated precipitation from runs with the standard convection parameterisation and with CCFM is compared against two sets of observations. The use of CCFM clearly improves the simulated precipitation patterns and total rainfall over the whole model domain. The distribution between large-scale and convective precipitation becomes more realistic. CCFM shows to be a useful concept to describe convective cloud spectra in atmospheric models, although there are still similar problems with occasionally extreme precipitation as in the original set-up of REMO.


2020 ◽  
Author(s):  
Breogán Gómez ◽  
Gonzalo Miguez-Macho

Abstract. Spectral nudging allows forcing a selected part of the spectrum of a model's solution with the equivalent part in a reference dataset, such as an analysis, reanalysis or another model. This constrains the evolution in certain scales, typically the synoptic ones, while allowing the others to evolve freely. In a limited area model (LAM) setting, spectral nudging is commonly used to impose the large-scale circulation in the interior of the domain, so that the high resolution features in the LAM's forecast are consistent with the global circulation patterns. In a previous study developed over a Mid-Latitude domain, we investigated two parameters of spectral nudging that are often overlooked despite having a significant impact on the model solution. First, the cut-off wave number, which is the parameter determining the scales that are nudged and has a critical impact on the spatial structure of the model solution. Second, the spin-up time, which is the time required to balance the nudging force with the model internal climate and roughly indicates the starting point from when the results of the simulation contain useful information. The question remains if our conclusions for Mid-Latitudes are applicable to other areas of the planet. Tropical Latitudes offer an interesting testbed as its atmospheric dynamics has unique characteristics with respect to that further North and yet it is the result of the same underlying physical principles. We study the impact of these two parameters in a domain centred in the Gulf of Mexico, with a particular aim to evaluate their performance related to hurricane modelling. We perform 4-day simulations along 6 monthly periods between 2010 and 2015, testing several spectral nudging configurations. Our results indicate that the optimal cut off wavenumber lies between 1000 Km and 1500 Km depending on the studied variable and that the spin-up time required is at least 72 h to 96 h, which is consistent with our previous work. We evaluate our findings in four hurricane cases, allowing for at least 96 h of spin-up time before the system becomes a tropical storm. Results confirm that the experiments with cut-off wavenumbers near the Rossby Radius of Deformation perform best. We also propose a novel approach in which a different cut-off wavenumber is used for each variable. Our tests in the hurricane cases show that the latter set up is able to outperform all of the other spectral nudging experiments when compared to observations.


2007 ◽  
Vol 7 (2) ◽  
pp. 409-421 ◽  
Author(s):  
H.-F. Graf ◽  
J. Yang

Abstract. A convective cloud field model (CCFM) is substituted for a standard mass flux parameterisation of convective clouds in a limited area atmospheric model (REMO) and is tested for a whole annual cycle (July 1997 to June 1998) over the West Pacific Maritime Continent. REMO with CCFM is run in 0.5-degree resolution and the model at the lateral boundaries is forced 6-hourly by ECMWF reanalysis data. Simulated precipitation from runs with the standard convection parameterisation and with CCFM is compared against two sets of observations. The use of CCFM clearly improves the simulated precipitation patterns and total rainfall over the whole model domain. The distribution between large-scale and convective precipitation becomes more realistic. CCFM shows to be a useful concept to describe convective cloud spectra in atmospheric models, although there are still similar problems with occasionally extreme precipitation as in the original set-up of REMO.


1996 ◽  
Vol 76 (06) ◽  
pp. 0939-0943 ◽  
Author(s):  
B Boneu ◽  
G Destelle ◽  

SummaryThe anti-aggregating activity of five rising doses of clopidogrel has been compared to that of ticlopidine in atherosclerotic patients. The aim of this study was to determine the dose of clopidogrel which should be tested in a large scale clinical trial of secondary prevention of ischemic events in patients suffering from vascular manifestations of atherosclerosis [CAPRIE (Clopidogrel vs Aspirin in Patients at Risk of Ischemic Events) trial]. A multicenter study involving 9 haematological laboratories and 29 clinical centers was set up. One hundred and fifty ambulatory patients were randomized into one of the seven following groups: clopidogrel at doses of 10, 25, 50,75 or 100 mg OD, ticlopidine 250 mg BID or placebo. ADP and collagen-induced platelet aggregation tests were performed before starting treatment and after 7 and 28 days. Bleeding time was performed on days 0 and 28. Patients were seen on days 0, 7 and 28 to check the clinical and biological tolerability of the treatment. Clopidogrel exerted a dose-related inhibition of ADP-induced platelet aggregation and bleeding time prolongation. In the presence of ADP (5 \lM) this inhibition ranged between 29% and 44% in comparison to pretreatment values. The bleeding times were prolonged by 1.5 to 1.7 times. These effects were non significantly different from those produced by ticlopidine. The clinical tolerability was good or fair in 97.5% of the patients. No haematological adverse events were recorded. These results allowed the selection of 75 mg once a day to evaluate and compare the antithrombotic activity of clopidogrel to that of aspirin in the CAPRIE trial.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Mariela Gabioux ◽  
Vladimir Santos da Costa ◽  
Joao Marcos Azevedo Correia de Souza ◽  
Bruna Faria de Oliveira ◽  
Afonso De Moraes Paiva

Results of the basic model configuration of the REMO project, a Brazilian approach towards operational oceanography, are discussed. This configuration consists basically of a high-resolution eddy-resolving, 1/12 degree model for the Metarea V, nested in a medium-resolution eddy-permitting, 1/4 degree model of the Atlantic Ocean. These simulations performed with HYCOM model, aim for: a) creating a basic set-up for implementation of assimilation techniques leading to ocean prediction; b) the development of hydrodynamics bases for environmental studies; c) providing boundary conditions for regional domains with increased resolution. The 1/4 degree simulation was able to simulate realistic equatorial and south Atlantic large scale circulation, both the wind-driven and the thermohaline components. The high resolution simulation was able to generate mesoscale and represent well the variability pattern within the Metarea V domain. The BC mean transport values were well represented in the southwestern region (between Vitória-Trinidade sea mount and 29S), in contrast to higher latitudes (higher than 30S) where it was slightly underestimated. Important issues for the simulation of the South Atlantic with high resolution are discussed, like the ideal place for boundaries, improvements in the bathymetric representation and the control of bias SST, by the introducing of a small surface relaxation. In order to make a preliminary assessment of the model behavior when submitted to data assimilation, the Cooper & Haines (1996) method was used to extrapolate SSH anomalies fields to deeper layers every 7 days, with encouraging results.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 661
Author(s):  
Luigi Piazzi ◽  
Stefano Acunto ◽  
Francesca Frau ◽  
Fabrizio Atzori ◽  
Maria Francesca Cinti ◽  
...  

Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat.


Sign in / Sign up

Export Citation Format

Share Document