Multi-GNSS real-time orbit and clock quality changes over time 

Author(s):  
Kamil Kazmierski ◽  
Radoslaw Zajdel ◽  
Krzysztof Sośnica

<p>Navigation systems have substantially evolved in the last decade. The multi-GNSS constellation including GPS, GLONASS, Galileo, and BeiDou consists of more than a hundred active satellites. To fully exploit their potential, users should be able to take advantage of those systems not only in postprocessing mode employing final solutions but also in real-time. It is also important to make satellite signals highly useful in a real-time regime not only in standard positioning mode but also with the precise positioning technique. That is why real-time products are highly desirable. One of the IGS Analysis Centers that support multi-GNSS real-time solution is CNES which provides not only orbits and clocks but also code and phase biases and VTEC global maps. Over the last few years, real-time products have been changing similarly to navigation systems, which come along with observation availability and calculation strategy changes.</p><p>We utilize the signal-in-space ranging error (SISRE) as the main orbit and clock quality indicator. Additionally, SLR observations are used as an independent source of information about orbit quality. Three years of data, between 2017 and 2020, are used to check the progress in the quality of the delivered products to the users through the internet streams provided by CNES.</p><p>The progress in the product quality in the test period is obvious and it depends on the satellite system, block or satellite type, time, and the height of the Sun above the orbital plane. The most accurate orbits are available for GPS, however, the very stable atomic clocks of Galileo compensate for systematic errors in Galileo orbits. Consequently, the SISRE for Galileo is lower than that for GPS, equaling 1.6 and 2.3 cm for Galileo and GPS, respectively. The SISRE value for GLONASS, despite the good quality of the orbits, is disturbed by the lower quality of the onboard clocks and is equal to 4-6 cm. The same quality level is for BeiDou-2 MEO and IGSO satellites. Products for BeiDou-2 GEO satellites are less accurate and with poor availability due to a large number of satellite maneuvers, thus they are not very useful for real-time positioning.</p><p>For positioning purposes, the presented results may be interesting especially in the context of the proper observation weighting in the multi-GNSS combinations. It is worth mentioning that the quality of the real-time products is not constant and neglecting this fact may bring undesirable positioning errors, especially for long processing campaigns.</p>

GPS Solutions ◽  
2020 ◽  
Vol 24 (4) ◽  
Author(s):  
Kamil Kazmierski ◽  
Radoslaw Zajdel ◽  
Krzysztof Sośnica

Abstract High-quality satellite orbits and clocks are necessary for multi-GNSS precise point positioning and timing. In undifferenced GNSS solutions, the quality of orbit and clock products significantly influences the resulting position accuracy; therefore, for precise positioning in real time, the corrections for orbits and clocks are generated and distributed to users. In this research, we assess the quality and the availability of real-time CNES orbits and clocks for GPS, GLONASS, Galileo, and BeiDou-2 separated by satellite blocks and types, as well as the product quality changes over time. We calculate the signal-in-space ranging error (SISRE) as the main orbit and clock quality indicator. Moreover, we employ independent orbit validation based on satellite laser ranging. We found that the most accurate orbits are currently available for GPS. However, Galileo utmost stable atomic clocks compensate for systematic errors in Galileo orbits. As a result, the SISRE for Galileo is lower than that for GPS, equaling 1.6 and 2.3 cm for Galileo and GPS, respectively. The GLONASS satellites, despite the high quality of their orbits, are characterized by poor quality of clocks, and together with BeiDou-2 in medium and geosynchronous inclined orbits, are characterized by SISRE of 4–6 cm. BeiDou-2 in geostationary orbits is characterized by large orbital errors and the lowest availability of real-time orbit and clock corrections due to a large number of satellite maneuvers. The quality of GNSS orbit and clock corrections changes over time and depends on satellite type, block, orbit characteristics, onboard atomic clock, and the sun elevation above the orbital plane.


2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2835 ◽  
Author(s):  
Bo Chen ◽  
Chengfa Gao ◽  
Yongsheng Liu ◽  
Puyu Sun

The Global Navigation Satellite System (GNSS) positioning technology using smartphones can be applied to many aspects of mass life, and the world’s first dual-frequency GNSS smartphone Xiaomi MI 8 represents a new trend in the development of GNSS positioning technology with mobile phones. The main purpose of this work is to explore the best real-time positioning performance that can be achieved on a smartphone without reference stations. By analyzing the GNSS raw measurements, it is found that all the three mobile phones tested have the phenomenon that the differences between pseudorange observations and carrier phase observations are not fixed, thus a PPP (precise point positioning) method is modified accordingly. Using a Xiaomi MI 8 smartphone, the modified real-time PPP positioning strategy which estimates two clock biases of smartphone was applied. The results show that using multi-GNSS systems data can effectively improve positioning performance; the average horizontal and vertical RMS positioning error are 0.81 and 1.65 m respectively (using GPS, BDS, and Galileo data); and the time required for each time period positioning errors in N and E directions to be under 1 m is less than 30s.


2013 ◽  
Vol 67 (2) ◽  
pp. 227-247 ◽  
Author(s):  
Zhenli Yang ◽  
Zhuangsheng Zhu ◽  
Weigao Zhao

In this paper, a triangle matching algorithm using local gravity field maps is proposed to bound the drift errors inherent in Strapdown Inertial Navigation Systems (SINS) in gravity-aided navigation. This triangle matching algorithm has two main stages, the first is the initial matching stage, which has a coarse phase and a fine phase to address the large unknown initial errors made by INS, and the other is the tracking matching stage, which mainly aims at tracking the matching solution with the vehicle running in real time. Simulations were carried out using data for the Bohai Sea and South China Sea areas, to assess the effects of different initial errors on the matching solutions. Finally some experiments were carried out to evaluate the proposed algorithm. The results show that the triangle matching algorithm has some compelling advantages, such as a capability to address the large unknown initial errors made by INS, and good real-time quality of matching the gravity measurements with the local gravity maps.


2019 ◽  
Vol 11 (11) ◽  
pp. 1321 ◽  
Author(s):  
Yibin Yao ◽  
Xingyu Xu ◽  
Chaoqian Xu ◽  
Wenjie Peng ◽  
Yangyang Wan

The tropospheric delay is one major error source affecting the precise positioning provided by the global navigation satellite system (GNSS). This error occurs because the GNSS signals are refracted while travelling through the troposphere layer. Nowadays, various types of model can produce the tropospheric delay. Among them, the globally distributed GNSS permanent stations can resolve the tropospheric delay with the highest accuracy and the best continuity. Meteorological models, such as the Saastamoinen model, provide formulae to calculate temperature, pressure, water vapor pressure and subsequently the tropospheric delay. Some grid-based empirical tropospheric delay models directly provide tropospheric parameters at a global scale and in real time without any auxiliary information. However, the spatial resolution of the GNSS tropospheric delay is not sufficient, and the accuracy of the meteorological and empirical models is relatively poor. With the rapid development of satellite navigation systems around the globe, the demand for real-time high-precision GNSS positioning services has been growing dramatically, requiring real-time and high-accuracy troposphere models as a critical prerequisite. Therefore, this paper proposes a multi-source real-time local tropospheric delay model that uses polynomial fitting of ground-based GNSS observations, meteorological data, and empirical GPT2w models. The results show that the accuracy in the zenith tropospheric delay (ZTD) of the proposed tropospheric delay model has been verified with a RMS (root mean square) of 1.48 cm in active troposphere conditions, and 1.45 cm in stable troposphere conditions, which is significantly better than the conventional tropospheric GPT2w and Saastamoinen models.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6027
Author(s):  
Lin Pan ◽  
Xuanping Li ◽  
Wenkun Yu ◽  
Wujiao Dai ◽  
Cuilin Kuang ◽  
...  

For time-critical precise applications, one popular technology is the real-time precise point positioning (PPP). In recent years, there has been a rapid development in the BeiDou Navigation Satellite System (BDS), and the constellation of global BDS (BDS-3) has been fully deployed. In addition to the regional BDS (BDS-2) constellation, the real-time stream CLK93 has started to support the BDS-3 constellation, indicating that the real-time PPP processing involving BDS-3 observations is feasible. In this study, the global positioning performance of real-time PPP with BDS-3/BDS-2 observations is initially evaluated using the datasets from 147 stations. In the east, north and upward directions, positioning accuracy of 1.8, 1.2 and 2.5 cm in the static mode, and of 6.7, 5.1 and 10.4 cm in the kinematic mode can be achieved for the BDS-3/BDS-2 real-time PPP, respectively, while the corresponding convergence time with a threshold of 10 cm is 32.9, 23.7 and 32.8 min, and 66.9, 42.9 and 69.1 min in the two modes in the three directions, respectively. To complete this, the availability of BDS-3/BDS-2 constellations, the quality of BDS-3/BDS-2 real-time precise satellite products, and the BDS-3/BDS-2 post-processed PPP solutions are also analyzed. For comparison, the results for the GPS are also presented.


2021 ◽  
Vol 13 (12) ◽  
pp. 2295
Author(s):  
Dominik Prochniewicz ◽  
Maciej Grzymala

Multipath is one of the major source of errors in precise Global Navigation Satellite System positioning. With the emergence of new navigation systems, such as Galileo, upgraded signals are progressively being used and are expected to provide greater resistance to the effects of multipath compared to legacy Global Positioning System (GPS) signals. The high quality of Galileo observations along with recent development of the Galileo space segment can therefore offer significant advantages to Galileo users in terms of the accuracy and reliability of positioning. The aim of this paper is to verify this hypothesis. The multipath impact was determined both for code and phase measurements as well as for positioning results. The code multipath error was determined using the Code-Minus-Carrier combination. The influence of multipath on phase observations and positioning error was determined using measurements on a very short baseline. In addition, the multipath was classified into two different types: specular and diffuse, using wavelet transform. The results confirm that the Galileo code observations are more resistant to the multipath effect than GPS observations. Among all of the observations examined, the lowest values of code multipath errors were recorded for the Galileo E5 signal. However, no advantage of Galileo over GPS was observed for phase observations and for the analysis of positioning results.


2021 ◽  
Vol 13 (3) ◽  
pp. 444
Author(s):  
Kamil Maciuk ◽  
Michał Apollo ◽  
Joanna Mostowska ◽  
Tomáš Lepeška ◽  
Mojca Poklar ◽  
...  

Determining the correct height of mountain peaks is vital for tourism, but it is also important as a reference point for devices equipped with GPS (Global Positioning System), e.g., watches or car navigation systems. The peak altitude data are part of geographic and geodetic information. As more modern technologies and equipment become available, their precisions should increase. However, verification of peak heights is usually only conducted for the highest, well-known mountains—lower peaks or mountain passes are rarely verified. Therefore, this study focuses on an investigation of 12 altitude points on a section of the longest and most famous touristic trail in Poland (the Main Beskid Trail), located in the Orava–Żywiec Beskids Mts (Mountains). The aim of this research is to measure and verify the heights of the 12 selected mountain peaks, in addition to evaluating the chosen methods based on the quality of the obtained data and determining their suitability and opportunities for use in further research. Measurements were obtained at the most specific height points—on the 12 highest points of the summits. This study compares two modern measurement techniques: the global navigation satellite system (GNSS) and light detection and ranging (LiDAR). The obtained results were later compared with those widely used on the internet and in printed materials (period covered: 1884–2015). This analysis demonstrates that lesser-known objects are rarely the subject of remeasurement and significant altitude errors may occur, primarily because the heights originated from a source in the past when modern methods were not available. Our findings indicate that the heights of the peaks presented in cartographic materials are inaccurate. The assumed heights should be corrected by direct measurements using modern techniques.


2021 ◽  
Author(s):  
Junchen Xue ◽  
Sreeja Vadakke Veettil ◽  
Marcio Aquino ◽  
Xiaogong Hu ◽  
Lin Quan ◽  
...  

Abstract. Geomagnetic storms are one of the space weather events. The radio signals transmitted by modern navigation systems suffer from the effects of storms which can degrade the performance of the whole system. In this study, the performance of BeiDou Navigation Satellite System (BDS) B1 frequency standard point positioning in China and its surrounding area during different classes of storms is investigated for the first time. The analysis of the results revealed that BDS B1 frequency standard point positioning accuracy was deteriorated during the storms. The probability of the extrema in the statistics of positioning errors during strong storms is the largest, followed by moderate and weak storms. The positioning accuracy for storms of a similar class is found not to be at the same level. The root mean square error (RMSE) in position for the different classes of storms could be at least tens of centimeters in the East, North and Up directions.


Sign in / Sign up

Export Citation Format

Share Document