Mine waste reuse and reprocessing: an important step for the implementation of the circular economy in Europe

Author(s):  
Françoise Bodénan ◽  
Yannick Ménard ◽  
Patrick d'Hugues

<p>Whereas there are growing needs for mineral resources (metals for the energy and digital transitions<br>and construction materials), the mining industry must produce them from poorer, more<br>heterogeneous and more complex deposits. Therefore, volumes of mine waste produced (including<br>tailings) are also increasing and add up to waste from mining legacy. For example in Europe (x27): 732<br>Mtons of extractive waste are generated per year and more than 1.2 Btons of legacy waste are stored<br>all over the European territory. The localisation (and potential hazards) are well known and covered<br>by the inventories carried out in EU countries under the Mining Waste Directive.<br>At the same time, Europe is implementing the circular economy approach and put a lot of emphasis<br>on the resource efficiency concept. In this context, reprocessing operation to recover both metals and<br>mineral fraction is studied with the objective of combing waste management (reducing final waste<br>storage and long-term impact) and material production from secondary resources.<br>Numerous industrial experiences of reprocessing of mine waste and tailings exist all over the world to<br>recover metals such as copper, gold or critical raw materials - CRM They concern mainly active mine<br>where both primary and secondary resources are considered in profitable operations; for example in<br>Chile, South Africa, Australia. Mineral fraction recovery is often not considered which still leaves the<br>industry with a high volume of residual minerals to store and manage.<br>In addition, legacy mining waste are potentially available for reprocessing. In this case, numerous<br>mining liabilities issues need to be managed. Some of the European legacy mining waste have residual<br>valuable metals that could be recovered but some of them have very low metal contents. In Europe,<br>classical rehabilitation operations – usually at the charge of member states and local authorities – is<br>the priority and concern the reduction of instabilities and impacts to the environment including heap<br>remodelling, covering and water management with long-term treatment. Completing this risk<br>management approach by a circular economy one is a very active R&D subject in EU27.<br>This presentation will give an overview of EU research projects which tackled the legacy mining waste<br>challenge from inventory to process development. Several process flowsheets to recover metals were<br>designed and tested on several case studies with CRM – REE, Co, W, Sb, etc. Initiatives to reuse mineral<br>fraction are also underway and should be ready for commercialisation in the coming years.<br>Resources efficiency concept and the circular economy implementation starts on mining sites. In order<br>to facilitate the implementation of this approach, the technical solutions will need to be included in<br>innovative global initiatives covering also legal (liability management), environmental (Life Cycle<br>Analysis approaches) and social (acceptance) questions.</p>

2020 ◽  
Vol 192 ◽  
pp. 03013
Author(s):  
Viktor Kryukov ◽  
Irina Kradenykh

The development of regional economy is based on medium and long-term strategies (programs) for economic industrialization. These documents are of a sectoral or integrated nature. Republic of Sakha (Yakutia) and Kamchatka Territory have a scientifically substantiated strategy for the development of the mining industry. Despite its absence in Khabarovsk Territory, subsoil use in recent years has shown a steady growth in mining. The main volume of income comes from gold mining mainly in the northern and central parts of the region. Over the past 10 years, the most economically advantageous and geographically accessible minerals have been identified in the region. These include: coal, gold, platinum, tin, construction materials, groundwater. In the future, it is necessary to plan the development of copper-porphyry, alunite and polymetallic fields. The issues of increasing the resource base of liquid and strategic metals, formation of infrastructure, complexity of the use of mineral wealth and rational use of mineral resources remain problematic. A positive solution to problems is possible when developing and implementing an industry strategy. The basis for its formation is the geological and economic assessment of particular territories of the region.


Overburden is the unutilized rock or soil bands that are generated during the mining process and are dumped near the marked placed inside the mine boundaries. It contains alluvial, sandstone, soil, gravel, clay, debris other than mining material. Dumping or management of this mine waste is a significant environmental problem, and additional cost spends to the mining industry. And also, most of this waste is disposed of at the surface, which inevitably requires extensive planning. Sand and gravel are low energy-intensive construction materials, but the growing demand for industrial uses has depleted this natural source. Limitations to natural sand extraction and legal regulations have been imposed in several countries due to environmental concerns. Due to the above, all the reasons river sand has become very costly in recent years. The research has been carried out to convert the overburden to processed overburden sand after that compared the geotechnical properties like specific gravity, permeability, moisture content, and grain size analysis, swell factor of both the overburden processed sand and natural river sand. Then we check the suitability of processed overburden material as a replacement to natural river sand in construction by comparing the strengths of the concrete samples prepared with both the river sand and processed overburden sand. We found the average compressive strength of overburden sand brick is 24.69 MPa, and river sand brick is 28.08 MPa of 14 days curing of bricks. The results obtained that the processed overburden sand can be used as the best alternative for the river sand because the geotechnical properties of both are almost the same. This processed overburden utilization in the coal mining area to reduced environmental impact, more availability of a land resource, minimizing the overburden disposable cost to the mining industry, and it’s also helpful to the preservation of natural river sand.


Author(s):  
He Niu ◽  
Lugas Raka Adrianto ◽  
Alexandra Gomez Escobar ◽  
Vladimir Zhukov ◽  
Priyadharshini Perumal ◽  
...  

Abstract Sulfidic mining waste rock is a side stream from the mining industry with a potential environmental burden. Alkali activation is a promising method for transforming mining waste into construction materials. However, the low reactivity of minerals can be a sizeable challenge in alkali activation. In the present study, the reactivity of waste rock was enhanced by mechanochemical treatment with a LiCl-containing grinding aid. X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) analysis were utilized to display the structural alteration of individual minerals. A schematic implication of the grinding mechanism of mica was provided according to the results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The alkaline solubility displayed the enhanced chemical reactivity of the waste rock, in which Si and Al solubility increased by roughly 10 times and 40 times, respectively. The amorphization of aluminosilicate is achieved through chemical assisted mechanochemical activation. Sulfidic waste rock, as the sole precursor in alkali activation, achieved a 28-day compressive strength exceeding 10 MPa under ambient curing conditions. The simulation of the upscaled grinding process was conducted via the HSC Chemistry® software with a life-cycle assessment. The results showed that mining waste rock can be a promising candidate for geopolymer production with a lower carbon footprint, compared to traditional Portland cement. Graphical Abstract


2020 ◽  
Author(s):  
Assma Bouiji ◽  
Omar witam ◽  
Mounsif Ibnoussina

<p>In Morocco, no measures have been taken to manage residual waste from operational or abandoned mining and quarries sites.</p><p>Indeed, significant quantities of mine waste, composed of concentrator residues and sterile waste, have been abandoned after the closure of operations without any effective management or rehabilitation planning.</p><p>These residues could have harmful impacts on the environment: soil and water pollution, destruction or disturbance of natural habitats, visual impact on the countryside...</p><p>The valorization and sustainable management of mining waste appear to be adequate solutions to major environmental problems. The construction sector can be a profitable sector to absorb chemically stable mining waste.</p><p>The objective of this research work is to study the feasibility of recycling waste from the abandoned Kettara mine (Morocco) and gypsum waste rock in Sidi Tijji (Morocco) as raw materials in construction materials.</p><p>The study consists first of a geological characterization and then a characterization of the physical, chemical and mineralogical properties of the residues, followed by an evaluation of the mechanical properties of the composite mixtures based on the chemically stable residues.</p><p>The Kettara mine is located in the Jbilet Central Mountains, 30 km northwest of Marrakech. Geologically, the pyrrhotite district of Kettara corresponds to the outcrop area of the volcano-sedimentary series of Saghlef shales. For the gypsum quarry at Sidi Tijji, which is part of the Safi basin, characterized by Jurassic outcrops essentially formed by gypsum and carbonate formations.</p><p>Mineralogical and chemical analysis have shown that these waste products are still rich in minerals such as the waste from the Kettara mine; the FeO3 concentrated amounts to 55.6%. In addition, gypsum waste rock represents a concentration of 28.9% CaO. Therefore, a low water content for the majority of samples.</p><p>Adapting to the principles of integrated recovery and management of mining and quarry waste requires a cultural change within the industry, but also in the ministries concerned.</p><p><strong>Keywords</strong>: Valorization, mine waste, mines and quarries, construction materials.</p>


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 286 ◽  
Author(s):  
Maedeh Tayebi-Khorami ◽  
Mansour Edraki ◽  
Glen Corder ◽  
Artem Golev

Mining wastes, particularly in the form of waste rocks and tailings, can have major social and environmental impacts. There is a need for comprehensive long-term strategies for transforming the mining industry to move toward zero environmental footprint. “How can the mining industry create new economic value, minimise its social and environmental impacts and diminish liability from mining waste?” This would require cross-disciplinary skills, across the social, environmental, technical, legal, regulatory, and economic domains, to produce innovative solutions. The aim of this paper is to review the current knowledge across these domains and integrate them in a new approach for exploiting or “re-thinking” mining wastes. This approach includes five key areas of social dimensions, geoenvironmental aspects, geometallurgy specifications, economic drivers and legal implications for improved environmental outcomes, and circular economy aspirations, which are aligned with the 10 principles of the International Council on Mining and Metals (ICMM). Applying circular economy thinking to mining waste presents a major opportunity to reduce the liability and increase the value of waste materials arising from mining and processing operations.


2020 ◽  
Author(s):  
Nic Bilham

<p>We rely on minerals for almost everything we do in our lives – from metals of all kinds, used in bulk or in tiny quantities in a huge range of technologies, to construction materials and fertilisers.  Sourcing this ever-growing range of raw minerals depends on a global mining industry, which has historically caused great social and environmental harm, and all too often continues to do so (not least because it is so energy- and water-intensive), despite progress towards addressing these impacts.</p><p>The circular economy (CE) promises more sustainable alternatives to conventional linear production and consumption models in which raw materials are extracted, used and ultimately discarded as waste.  It seeks to minimise waste and environmental harm throughout the supply chain while optimising resource efficiency, and recognises the need to transform the design of products, services and technologies in order to reduce resource use and maximise recoverability for recycling, remanufacture and reuse.  Nonetheless, however rapidly a CE transition is implemented, society will still require significant quantities of primary mined resources.  For instance, many of the elements required for low-carbon energy technologies have not previously been mined and used in significant quantities, so they are simply not (yet) available to recycle.  A transition to a more sustainable and socially just ‘new minerals economy’ must therefore encompass both the emergent circular economy and the mining sector. </p><p>Although there is an urgent need for the mineral resource consumption and production system to undergo a sustainability transition, and despite its deep entanglement with other such socio-technical systems (energy, but also water, food and transport, for instance), it has yet to be addressed in the transitions literature.  Indeed, there has been very little research from any perspective that has considered CE and mining together, or taken a system-level view including both responsible sourcing (by manufacturers) and responsible supply (by mining companies or through CE routes). </p><p>This presentation outlines my ongoing PhD project to develop a preliminary conceptual framework for a socio-technical transition to a ‘new minerals economy’, and to undertake three case studies of actors across the mineral resources system seeking to take a more responsible and sustainable approach encompassing both mined and CE resources – a manufacturer, a mining company and a material stewardship scheme operator.  The research will take an iterative, abductive approach, to develop the preliminary framework while drawing on relevant concepts from the transitions literature to maximise learning opportunities from the case studies. </p>


2001 ◽  
Vol 120 (5) ◽  
pp. A115-A115 ◽  
Author(s):  
E CALVERT ◽  
L HOUGHTON ◽  
P COOPER ◽  
P WHORWELL

2004 ◽  
Vol 171 (4S) ◽  
pp. 424-424 ◽  
Author(s):  
Monica G. Ferrini ◽  
Eliane G. Valente ◽  
Jacob Rajfer ◽  
Nestor F. Gonzalez-Cadavid

2013 ◽  
Author(s):  
Christina Marel ◽  
Maree Teesson ◽  
Shane Darke ◽  
Katherine Mills ◽  
Joanne Ross ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document