Does the interior of the ocean hide a major part of the eddy field?

Author(s):  
Florian Schütte ◽  
Ivy Frenger ◽  
Kristin Burmeister ◽  
Sabrina Speich ◽  
Johannes Karstensen

<p>In ocean research, mesoscale eddies typically are detected through surface signatures based on satellite data. The assumption is that most eddies are surface intensified and have a vertical structure consistent with a surface intensified mode. However, in-situ eddy observations, especially in the tropical oceans, showed that the vertical eddy structure is often more complex than previously assumed (higher baroclinic modes), and a diverse subsurface eddy field is present, which does not show any surface signatures at all. Our objective here is a first step towards a quantification of the occurrence of subsurface relative to surface eddies. To do this, we use an actively eddying model to compare the subsurface eddy field to its surface signatures in order to be able to estimate which vertical eddy structures prevail and how much of the eddy field is hidden in the subsurface. In addition, the model results are compared against an unprecedented assemblage of observations of subsurface eddies in the tropical oceans. In a first step we focus on eddies in the model that are detectable at the surface for more than 120 days. We found that around 60 % of the detected eddies have a vertical structure associated with a surface intensified mode as previously assumed which are characterized by a strong surface signature. Around 40 % of the eddy field have a vertical structure associated to a higher baroclinic mode. They are often called “intrathermocline” eddies and are characterized by a rather weak surface signature. In a second step we track subsurface eddies (lifetime > 120 days) in the model by identifying density layer thickness anomalies and connect them with possible surface signatures. Around 30 % of the total eddy field of the model, are hidden in the subsurface with no detectable surface signature. In conclusion, our results show that subsurface eddies form a substantial contribution to the total eddy field. Consequently it is difficult to estimate the impact of the eddy field on the ocean when only working with surface based satellite data.</p>

Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


Author(s):  
Dehai Luo ◽  
Wenqi Zhang

AbstractThis paper examines the impact of the meridional and vertical structures of a preexisting upstream storm track (PUST) organized by preexisting synoptic-scale eddies on eddy-driven blocking in a nonlinear multi-scale interaction model. In this model, the blocking is assumed, based on observations, to be comprised of barotropic and first baroclinic modes, whereas the PUST consists of barotropic, first baroclinic and second baroclinic modes. It is found that the nonlinearity (dispersion) of blocking is intensified (weakened) with increasing amplitude of the first baroclinic mode of the blocking itself. The blocking tends to be long-lived in this case. The lifetime and strength of blocking are significantly influenced by the amplitude of the first baroclinic mode of blocking for given basic westerly winds (BWWs), whereas its spatial pattern and evolution are also affected by the meridional and vertical structures of the PUST.It is shown that the blocking mainly results from the transient eddy forcing induced by the barotropic and first baroclinic modes of PUST, whereas its second baroclinic mode contributes little to the transient eddy forcing. When the PUST shifts northward, eddy-driven blocking shows an asymmetric dipole structure with a strong anticyclone/weak cyclone in a uniform BWW, which induces northward-intensified westerly jet and storm track anomalies mainly on the north side of blocking. However, when the PUST has no meridional shift and is mainly located in the upper troposphere, a north-south anti-symmetric dipole blocking and an intensified split jet with maximum amplitude in the upper troposphere form easily for vertically varying BWWs without meridional shear.


2021 ◽  
Author(s):  
Istvan Geresdi ◽  
Lulin Xue ◽  
Sisi Chen ◽  
Youssef Wehbe ◽  
Roelof Bruintjes ◽  
...  

Abstract. A hybrid bin microphysical scheme is developed in a parcel model framework to study how natural aerosol particles and different types of hygroscopic seeding materials affect the precipitation formation. A novel parameter is introduced to describe the impact of different seeding particles on the evolution of the drop size distribution. The results of more than 100 numerical experiments using the hybrid bin parcel model show that: (a) The Ostwald-ripening effect has a substantial contribution to the broadening of the drop size distribution near the cloud base. The efficiency of this effect increases as the updraft velocity decreases. (b) The efficiency of hygroscopic seeding is significant only if the size of the seeding particles is in the coarse particle size range. The presence of the water-soluble background coarse particles reduces the efficiency of the seeding. (c) The efficient broadening of the size distribution due to the seeding depends on the width of the size distribution of water drops in the control cases, but the relation is not as straightforward as in the case of the glaciogenic seeding.


2020 ◽  
Vol 641 ◽  
pp. A140
Author(s):  
◽  
B. Benmahi ◽  
T. Cavalié ◽  
M. Dobrijevic ◽  
N. Biver ◽  
...  

Context. The comet Shoemaker-Levy 9 impacted Jupiter in July 1994, leaving its stratosphere with several new species, with water vapor (H2O) among them. Aims. With the aid of a photochemical model, H2O can be used as a dynamical tracer in the Jovian stratosphere. In this paper, we aim to constrain the vertical eddy diffusion (Kzz) at levels where H2O is present. Methods. We monitored the H2O disk-averaged emission at 556.936 GHz with the space telescope between 2002 and 2019, covering nearly two decades. We analyzed the data with a combination of 1D photochemical and radiative transfer models to constrain the vertical eddy diffusion in the stratosphere of Jupiter. Results. Odin observations show us that the emission of H2O has an almost linear decrease of about 40% between 2002 and 2019. We can only reproduce our time series if we increase the magnitude of Kzz in the pressure range where H2O diffuses downward from 2002 to 2019, that is, from ~0.2 mbar to ~5 mbar. However, this modified Kzz is incompatible with hydrocarbon observations. We find that even if an allowance is made for the initially large abundances of H2O and CO at the impact latitudes, the photochemical conversion of H2O to CO2 is not sufficient to explain the progressive decline of the H2O line emission, which is suggestive of additional loss mechanisms. Conclusions. The Kzz we derived from the Odin observations of H2O can only be viewed as an upper limit in the ~0.2 mbar to ~5 mbar pressure range. The incompatibility between the interpretations made from H2O and hydrocarbon observations probably results from 1D modeling limitations. Meridional variability of H2O, most probably at auroral latitudes, would need to be assessed and compared with that of hydrocarbons to quantify the role of auroral chemistry in the temporal evolution of the H2O abundance since the SL9 impacts. Modeling the temporal evolution of SL9 species with a 2D model would naturally be the next step in this area of study.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170407 ◽  
Author(s):  
Paul I. Palmer

The 2015/2016 El Niño was the first major climate variation when there were a range of satellite observations that simultaneously observed land, ocean and atmospheric properties associated with the carbon cycle. These data are beginning to provide new insights into the varied responses of land ecosystems to El Niño, but we are far from fully exploiting the information embodied by these data. Here, we briefly review the atmospheric and terrestrial satellite data that are available to study the carbon cycle. We also outline recommendations for future research, particularly the closer integration of satellite data with forest biometric datasets that provide detailed information about carbon dynamics on a range of timescales. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2020 ◽  
Vol 50 (1) ◽  
pp. 239-253
Author(s):  
K. H. Brink ◽  
J. Pedlosky

AbstractThis contribution seeks to understand the vertical structure of linearized quasigeostrophic baroclinic modes when they are modified by the presence of a baroclinic mean flow and associated potential vorticity gradients. It is found that even modest, O(0.05 m s−1), mean flows can give rise to very substantial changes in modal structures, often in the sense of increased surface intensification. The extent to which stable modes are modified depends strongly on the direction of Rossby wave propagation. Further, baroclinically unstable solutions can appear, and a meaningful inviscid critical-layer solution can occur at the transition to instability when the horizontal gradient of potential vorticity changes sign at some depth within the water column. In addition, the gravest, n = 0, vertical stable mode is no longer strictly barotropic, but rather it can carry density variability at frequencies much higher than those possible for baroclinic (higher) Rossby wave modes. This finding appears to be consistent with oceanic current-meter observations that suggest temperature variability propagation even when the frequency is too high for traditional baroclinic Rossby waves to exist.


2014 ◽  
Vol 7 (8) ◽  
pp. 2757-2773 ◽  
Author(s):  
M. Costa-Surós ◽  
J. Calbó ◽  
J. A. González ◽  
C. N. Long

Abstract. The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.


Sign in / Sign up

Export Citation Format

Share Document