scholarly journals Asymmetric impacts on Mars' polar vortices from the 2018 Global Dust Storm

2021 ◽  
Author(s):  
Paul Streeter ◽  
Stephen Lewis ◽  
Manish Patel ◽  
James Holmes ◽  
Anna Fedorova ◽  
...  

<p><strong>Introduction:</strong>  Like Earth, Mars possesses dynamical atmospheric features known as polar vortices. These are regions of cold, isolated polar air surrounded by powerful westerly wind jets which can create barriers to transport of atmospheric dust, water, and chemical species. They have a complex and asymmetrical (north/south) relationship with atmospheric dust loading [1]. Regional and global dust events have been shown to cause rapid vortex displacement [2,3] in the northern vortex, while the southern vortex appears more robust.</p> <p>Unlike Earth, Mars also experiences planet-encircling Global Dust Storms: spectacular, planet-spanning events which dramatically increase atmospheric dust loading. The most recent such event in 2018 (beginning at northern autumn equinox) [4] was observed by multiple spacecraft, including the ExoMars Trace Gas Orbiter (TGO) and the Mars Reconnaissance Orbiter (MRO), enabling the opportunity to study its effects on the polar vortices in detail.</p> <p>We do this by assimilating [5] spacecraft data from TGO’s Atmospheric Chemistry Suite (ACS) [6,7] and MRO’s Mars Climate Sounder (MCS) [8,9] into the LMD-UK Mars Global Climate Model [10], a 4D numerical model of the martian atmosphere.</p> <p><strong>Results: </strong>We present our recently published results [11], where we find that the 2018 GDS had asymmetrical impacts in each hemisphere: the northern polar vortex remained relatively robust, while the southern polar vortex was significantly disrupted. This asymmetry was due to both the storm’s latitudinal extent, which was greater in the south than in the north, and its timing, occurring as the southern vortex was already decaying after equinox. Both polar vortices and especially the northern showed reductions in their ellipticity, and this correlated with a reduction in high-latitude stationary wave activity in both hemispheres. We show that the characteristic elliptical shape of Mars’ polar vortices is the pattern of the stationary waves; this was suppressed during the storm by the shifting of the polar jet away from regions of high mechanical forcing in the north, and by the reduced polar jet due to the decreased meridional temperature gradient in the south. These asymmetric effects suggest enhanced transport into the southern, but not northern, polar region during GDS around northern autumn equinox, as well as more longitudinally symmetric transport around both poles.</p> <p><strong> </strong></p> <p><strong>References:</strong> [1] Waugh, D. W. et al (2016) <em>J. Geophys. Res. Planets, 121, </em>1770-1785. [2] Guzewich, S. D. et al (2016) <em>Icarus, 278, </em>100-118. [3] Mitchell, D. M. et al (2015) <em>Q.J.R. Meteorol. Soc., 141, </em>550-562. [4] Kass, D. M et al (2019) <em>GRL, 47</em>(23). [5] Lewis, S. R. et al (2007) <em>Icarus, 192</em>(2). [6] Korablev, O. et al (2018) <em>Space Sci. Rev., 214</em>(7). [7] Fedorova, A. A. et al (2020) <em>Science, 367</em>(6475). [8] McCleese, D. J. et al (2007) <em>JGR (Planets), 112</em>(E5). [9] Kleinböhl, A. et al (2009) <em>JGR (Planets), 114</em>(E10). [10] Forget, F. et al (1999) <em>JGR (Planets), 104</em>(E10). [11] Streeter, P. M. et al (2021) <em>JGR (Planets), </em>e2020JE006774.</p>

2011 ◽  
Vol 68 (6) ◽  
pp. 1273-1289 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend from the equatorial stratosphere into the subtropical troposphere. In the presence of extratropical eddies, the zonal wind anomalies are intensified and extend downward to the surface. The tropospheric response differs qualitatively between integrations in which the subtropical jet is strong and integrations in which the subtropical jet is weak. While fluctuation–dissipation theory provides a guide to predicting the response in some cases, significant nonlinearity in others, particularly those designed to model the midwinter subtropical jet of the North Pacific, prevents its universal application. When the extratropical circulation is made zonally asymmetric, the response to the QBO is greatest in the exit region of the subtropical jet. The dry model is able to simulate much of the Northern Hemisphere wintertime tropospheric response to the QBO observed in reanalysis datasets and in long time integrations of the Whole Atmosphere Community Climate Model (WACCM).


2021 ◽  
Author(s):  
Ramiro Checa-Garcia ◽  
Didier Didier Hauglustaine ◽  
Yves Balkanski ◽  
Paola Formenti

<p>Glyoxal (GL) and methylglyoxal (MGL) are the smallest di-carbonyls present in the atmosphere. They hydrate easily, a process that is followed by an oligomerisation. As a consequence, it is considered that they participate actively in the formation of secondary organic aerosols (SOA) and therefore, they are being introduced in the current climate models with interactive chemistry to assess their importance on atmospheric chemistry. In our study we present the introduction of glyoxal in the INCA global model. A new closed set of gas-phase  reactions is analysed first with a box model. Then the simulated global distribution of glyoxal by the global climate model is compared with satellite observations. We show that the oxidation of volatile organic compounds and acetylene, together with the photolysis of more complex di-carbonyls allows us to reproduce well glyoxal seasonal cycle in the tropics but it requires an additional sink in several northern hemispheric regions. Additional sensitivity studies are being conducted by introducing  GL and MGL interactions with dust and SOA according to new uptake  coefficients obtained by dedicated experiments in the CESAM instrument (Chamber of Experimental Simulation of Atmospheric Multiphases). The effects of these heterogeneous chemistry processes will be quantified in the light of the new chamber measurements  and also evaluated in terms of optical properties of aged dust aerosol  and the changes in direct radiative effects  of the involved aerosol species.</p>


2017 ◽  
Author(s):  
Michail Alvanos ◽  
Theodoros Christoudias

Abstract. This paper presents an application of GPU accelerators in Earth system modelling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA compatible kernel, by parsing the FORTRAN code generated by the Kinetic Pre-Processor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported. Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators shows achieved speedups of 4.5× and 22.4× respectively of the kernel execution time. A node-to-node real-world production performance comparison shows a 1.75× speed-up over the non-accelerated application using the KPP 3-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only version of the application. The relative difference is found to be less than 0.00005 % when comparing the output of the accelerated kernel the CPU-only code, within the target level of relative accuracy (relative error tolerance) of 0.1 %. The approach followed, including the computational workload division and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.


Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 369-378 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


2019 ◽  
Vol 58 (7) ◽  
pp. 1509-1522 ◽  
Author(s):  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Helene B. Erlandsen

AbstractA method for empirical–statistical downscaling was adapted to project seasonal cyclone density over the North Atlantic Ocean. To this aim, the seasonal mean cyclone density was derived from instantaneous values of the 6-h mean sea level pressure (SLP) reanalysis fields. The cyclone density was then combined with seasonal mean reanalysis and global climate model projections of SLP or 500-hPa geopotential height to obtain future projections of the North Atlantic storm tracks. The empirical–statistical approach is computationally efficient because it makes use of seasonally aggregated cyclone statistics and allows the future cyclone density to be estimated from the full ensemble of available CMIP5 models rather than from a smaller subset. However, the projected cyclone density in the future differs considerably depending on the choice of predictor, SLP, or 500-hPa geopotential height. This discrepancy suggests that the relationship between the cyclone density and SLP, 500-hPa geopotential height, or both is nonstationary; that is, that the statistical model depends on the calibration period. A stationarity test based on 6-hourly HadGEM2-ES data indicated that the 500-hPa geopotential height was not a robust predictor of cyclone density.


2021 ◽  
Author(s):  
Yiling Huo ◽  
William Richard Peltier ◽  
Deepak Chandan

Abstract. Proxy records suggest that the Northern Hemisphere during the mid-Holocene (MH), to be assumed herein to correspond to 6,000 years ago, was generally warmer than today during summer and colder in the winter due to the enhanced seasonal contrast in the amount of solar radiation reaching the top of the atmosphere. The complex orography of both India and Southeast Asia (SEA), which includes the Himalayas and the Tibetan Plateau (TP) in the north and the Western Ghats mountains along the west coast of India in the south, renders the regional climate complex and the simulation of the intensity and spatial variability of the MH summer monsoon technically challenging. In order to more accurately capture important regional features of the monsoon system in these regions, we have completed a series of regional climate simulations using a coupled modeling system consisting of the University of Toronto version of the Coupled Climate System Model version 4 (UofT-CCSM4), the Weather Research and Forecasting (WRF) regional climate model and the 3D Coastal and Regional Ocean Community model (CROCO) to dynamically downscale MH global simulations constructed using UofT-CCSM4. In the global model, we have taken care to incorporate Green Sahara (GS) boundary conditions in order to compare with standard MH simulations and to capture interactions between the GS and the monsoon circulations in India and SEA. In both the global and the regional models, the response of the South Asia (SA) and SEA monsoons to MH orbital forcing is intensified and accompanies lower surface temperature which is likely related to the increased reflectance of shortwave flux at high levels from the greater cloud cover. Comparison of simulated and reconstructed climates suggest that the dynamically downscaled simulations produce significantly more realistic anomalies in the Asian monsoon than the global climate model, although they both continue to underestimate the inferred changes in precipitation based upon reconstructions using climate proxy information. Monsoon precipitation over SA and SEA is also greatly influenced by the inclusion of a GS, with a large increase in particular being predicted over northern SA and SEA, and a lengthening of the monsoon season. Data-model comparison with downscaled simulations outperform those with the coarser global model, highlighting the crucial role of downscaling in paleo data-model comparison.


2020 ◽  
Vol 20 (23) ◽  
pp. 15227-15245
Author(s):  
Edward J. Charlesworth ◽  
Ann-Kristin Dugstad ◽  
Frauke Fritsch ◽  
Patrick Jöckel ◽  
Felix Plöger

Abstract. We investigate the impact of model trace gas transport schemes on the representation of transport processes in the upper troposphere and lower stratosphere. Towards this end, the Chemical Lagrangian Model of the Stratosphere (CLaMS) was coupled to the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and results from the two transport schemes (Lagrangian critical Lyapunov scheme and flux-form semi-Lagrangian, respectively) were compared. Advection in CLaMS was driven by the EMAC simulation winds, and thereby the only differences in transport between the two sets of results were caused by differences in the transport schemes. To analyze the timescales of large-scale transport, multiple tropical-surface-emitted tracer pulses were performed to calculate age of air spectra, while smaller-scale transport was analyzed via idealized, radioactively decaying tracers emitted in smaller regions (nine grid cells) within the stratosphere. The results show that stratospheric transport barriers are significantly stronger for Lagrangian EMAC-CLaMS transport due to reduced numerical diffusion. In particular, stronger tracer gradients emerge around the polar vortex, at the subtropical jets, and at the edge of the tropical pipe. Inside the polar vortex, the more diffusive EMAC flux-form semi-Lagrangian transport scheme results in a substantially higher amount of air with ages from 0 to 2 years (up to a factor of 5 higher). In the lowermost stratosphere, mean age of air is much smaller in EMAC, owing to stronger diffusive cross-tropopause transport. Conversely, EMAC-CLaMS shows a summertime lowermost stratosphere age inversion – a layer of older air residing below younger air (an “eave”). This pattern is caused by strong poleward transport above the subtropical jet and is entirely blurred by diffusive cross-tropopause transport in EMAC. Potential consequences from the choice of the transport scheme on chemistry–climate and geoengineering simulations are discussed.


2020 ◽  
Author(s):  
Twan van Noije ◽  
Tommi Bergman ◽  
Philippe Le Sager ◽  
Declan O'Donnell ◽  
Risto Makkonen ◽  
...  

Abstract. This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model and describe in detail how it differs from the other EC-Earth3 configurations, and what the new features are compared to the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under pre-industrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The mean energy imbalance at the top of the atmosphere in the pre-industrial control simulation is −0.10 ± 0.25 W m−2 and shows no significant drift. The corresponding mean global surface air temperature is 14.05 ± 0.16 °C, with a small drift of −0.075 ± 0.009 °C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 °C and its transient climate response at 2.1 °C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread among ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared to the ERA5 reanalysis of the European Centre for Medium-Range Weather Forecasts, the ensemble mean surface air temperature climatology for 1995–2014 has an average bias of −0.86 ± 0.35 °C in the Northern Hemisphere and 1.29 ± 0.05 °C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant climate effects from the 20th century onwards. For the SSP3-7.0 shared socio-economic pathway, the model gives a global warming at the end of the 21st century (2091–2100) of 4.9 °C above the pre-industrial mean. A 0.5 °C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 °C.


2021 ◽  
Author(s):  
Wajeeha Shafeeq ◽  
Erika Coppola ◽  
Fabio Di Sante

<p>Hindukush Karakorum and Himalayan (HKH) is a unique region with a vast number of glaciers and lies in the north of the South Asia landmass, which serves as the main reservoir for the South Asian freshwater resources. By using CORDEX-CORE downscaled simulations with ICTP Regional Climate Model (RegCM4.7) the climate change impact on the water resources of the HKH region is analysed. HKH contains Indus, Ganges and Brahmaputra water basins, which are feed from both snow as well as precipitation. Due to the temperature increase over this region, the snowmelt timing will be affected, and therefore the snowmelt driven runoff (SDR) in the whole HKH basin. This effect will be combined with the projected increase of precipitation and in particular convective precipitation mostly due to extreme precipitation increase. As a result for the whole HKH basin, the water year will be longer with a shift (negative) toward the earlier months of the year of the time when the 25th (~2-3 months), 50th( ~1month), and 75th (~1 month) percentile of the total runoff is observed in a certain point, in the upper part of the basin and a positive shift (~10 days) in the lower part of the basin for the 50th and 75th percentile. The results show that the Indus basin is the one most affected by the snow melt time change followed by the Brahmaputra and Ganges as the last one. This study indicates that changing climate may result in a shift in the discharge timing over the HKH region and this information may be crucial for planning the mitigation and adaptation actions like for example building dams, changing dam regulation options, and changing agriculture strategies.</p>


2014 ◽  
Vol 27 (2) ◽  
pp. 592-606 ◽  
Author(s):  
Dimitry Smirnov ◽  
Matthew Newman ◽  
Michael A. Alexander

Abstract Air–sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 1° × 1° objectively analyzed air–sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully reproduces the observed anomaly evolution through lead times of 90 days, allowing an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing upon North Pacific SSTs. It is found that east of the date line, SST variability is maintained by, but has little effect on, TA variability. However, in the Kuroshio–Oyashio confluence and extension region, about half of the SST variability is independent of TA, driven instead by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis does not alter this conclusion, suggesting TA adequately represents the atmosphere. Repeating the analysis with the output of two control simulations from a fully coupled global climate model (GCM) differing only in their ocean resolution yields qualitatively similar results. However, for the simulation employing the coarse-resolution (1°) ocean model, all SST variability depends upon TA, apparently caused by a near absence of ocean-induced noise forcing. Collectively, these results imply that a strong contribution from internal oceanic forcing drives SST variability in the Kuroshio–Oyashio region, which may be used as a justification for atmospheric GCM experiments forced with SST anomalies in that region alone. This conclusion is unaffected by increasing the dimensionality of the model to allow for intrabasin interaction.


Sign in / Sign up

Export Citation Format

Share Document