scholarly journals The economically optimal warming limit of the planet

2018 ◽  
Author(s):  
Falko Ueckerdt ◽  
Katja Frieler ◽  
Stefan Lange ◽  
Leonie Wenz ◽  
Gunnar Luderer ◽  
...  

Abstract. Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Allen et al., 2018; Dell et al., 2014; IPCC, 2014b; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (Allen et al., 2018; IPCC, 2014a; Rogelj et al., 2015). Here we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 °C if temperature changes continue to impact national economic growth rates as observed in the past. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. For our study we estimated climate change impacts on economic growth for 186 countries based on recent empirical insights (Burke et al., 2015a), and mitigation costs using a state-of-the-art energy-economy-climate model with a wide range of highly-resolved mitigation options. Our purely economic assessment, even though it omits non-monetary damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to “well below 2 degrees” is thus also an economically optimal goal.

2019 ◽  
Vol 10 (4) ◽  
pp. 741-763 ◽  
Author(s):  
Falko Ueckerdt ◽  
Katja Frieler ◽  
Stefan Lange ◽  
Leonie Wenz ◽  
Gunnar Luderer ◽  
...  

Abstract. Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy–economy–climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to “well below 2 degrees” is thus also an economically optimal goal given above assumptions on adaptation and damage persistence.


2021 ◽  
Vol 893 (1) ◽  
pp. 012035
Author(s):  
Ikrom Mustofa ◽  
Perdinan ◽  
Syafararisa Dian Pratiwi ◽  
Suvany Aprilia ◽  
Raden Eliasar Prabowo Tjahjono ◽  
...  

Abstract Designing climate change adaptation actions are considerably a challenge, as the actions should be targeted uniquely addressing climate change impacts. One of the challenges is to determine climate change adaptation sites. The complexity raises considering climate change impact a wide range of economic sectors, which require a lot of resources to conduct a comprehensive climate change assessments. This study proposes the use of climate change hotspots as an initiative to firstly consider the potential targeted sites. The target of global efforts to maintain air temperature under 2°C was employed as a clue to prioritize areas that air temperature is increasing beyond the thresholds to which can affect human activities. This study employed spatial and threshold analysis to develop climate change hotspots of projected temperature change for 2021-2050 over Indonesia. The thresholds were defined by considering the effects of base temperature of 32 °C, 35 °C, and 38 °C on agriculture, environment, and human health in combination with elevated temperature from 0.75 to 2 °C. The initiative method was applied to the baseline and projected air temperature obtained from higher resolution of climate model outputs simulated under representative carbon pathway scenario of 4.5 (RCP 4.5 and 8.5) as a case study. The maps of climate change hotspots provide the potential targeted areas for climate change adaptation actions. Referring to the target of suppressing global temperatures below 2°C, we identified the distribution of climate change hotspots in Indonesia with a scenario of increasing temperature of 2°C from baseline conditions so that future air temperatures will be more than 35°C. The maps can also be combined with the other maps related to climate change analyses, which are available in Indonesia such as SIDIK to refine the priority areas and/or more general geographic information such as city location. As an example, the overlay of climate change hotspots and city location can provide early anticipation on which city will experience urban heat island. The development of climate change hotspots nationally is also expected to initiate climate change services that can be provided to the end users to ease them in defining suitable actions to adapt to the impacts of climate change.


2007 ◽  
Vol 56 (4) ◽  
pp. 27-33 ◽  
Author(s):  
B. van den Hurk ◽  
A.K. Tank ◽  
G. Lenderink ◽  
A. van Ulden ◽  
G.J. van Oldenborgh ◽  
...  

A new set of climate change scenarios for 2050 for the Netherlands was produced recently. The scenarios span a wide range of possible future climate conditions, and include climate variables that are of interest to a broad user community. The scenario values are constructed by combining output from an ensemble of recent General Climate Model (GCM) simulations, Regional Climate Model (RCM) output, meteorological observations and a touch of expert judgment. For temperature, precipitation, potential evaporation and wind four scenarios are constructed, encompassing ranges of both global mean temperature rise in 2050 and the strength of the response of the dominant atmospheric circulation in the area of interest to global warming. For this particular area, wintertime precipitation is seen to increase between 3.5 and 7% per degree global warming, but mean summertime precipitation shows opposite signs depending on the assumed response of the circulation regime. Annual maximum daily mean wind speed shows small changes compared to the observed (natural) variability of this variable. Sea level rise in the North Sea in 2100 ranges between 35 and 85 cm. Preliminary assessment of the impact of the new scenarios on water management and coastal defence policies indicate that particularly dry summer scenarios and increased intensity of extreme daily precipitation deserves additional attention in the near future.


2010 ◽  
Vol 365 (1554) ◽  
pp. 2973-2989 ◽  
Author(s):  
Jemma Gornall ◽  
Richard Betts ◽  
Eleanor Burke ◽  
Robin Clark ◽  
Joanne Camp ◽  
...  

This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO 2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 712
Author(s):  
Mamadou Lamine Mbaye ◽  
Mouhamadou Bamba Sylla ◽  
Moustapha Tall

This study assesses the changes in precipitation (P) and in evapotranspiration (ET) under 1.5 °C and 2.0 °C global warming levels (GWLs) over Senegal in West Africa. A set of twenty Regional Climate Model (RCM) simulations within the Coordinated Regional Downscaling Experiment (CORDEX) following the Representative Concentration Pathways (RCP) 4.5 emission scenario is used. Annual and seasonal changes are computed between climate simulations under 1.5 °C and 2.0 °C warming, with respect to 0.5 °C warming, compared to pre-industrial levels. The results show that annual precipitation is likely to decrease under both magnitudes of warming; this decrease is also found during the main rainy season (July, August, September) only and is more pronounced under 2 °C warming. All reference evapotranspiration calculations, from Penman, Hamon, and Hargreaves formulations, show an increase in the future under the two GWLs, except annual Penman evapotranspiration under the 1.5 °C warming scenario. Furthermore, seasonal and annual water balances (P-ET) generally exhibit a water deficit. This water deficit (up to 180 mm) is more substantial with Penman and Hamon under 2 °C. In addition, analyses of changes in extreme precipitation reveal an increase in dry spells and a decrease in the number of wet days. However, Senegal may face a slight increase in very wet days (95th percentile), extremely wet days (99th), and rainfall intensity in the coming decades. Therefore, in the future, Senegal may experience a decline in precipitation, an increase of evapotranspiration, and a slight increase in heavy rainfall. Such changes could have serious consequences (e.g., drought, flood, etc.) for socioeconomic activities. Thus, strong governmental politics are needed to restrict the global mean temperature to avoid irreversible negative climate change impacts over the country. The findings of this study have contributed to a better understanding of local patterns of the Senegal hydroclimate under the two considered global warming scenarios.


Sign in / Sign up

Export Citation Format

Share Document