scholarly journals MESMER-M: an Earth System Model emulator for spatially resolved monthly temperatures

2021 ◽  
Author(s):  
Shruti Nath ◽  
Quentin Lejeune ◽  
Lea Beusch ◽  
Carl-Friedrich Schleussner ◽  
Sonia I. Seneviratne

Abstract. The degree of trust placed in climate model projections is commensurate to how well their uncertainty can be quantified, particularly at timescales relevant to climate policy makers. On interannual to decadal timescales, model uncertainty due to internal variability dominates and is imperative to understanding near-term and seasonal climate events, but hard to quantify owing to the computational constraints on producing large ensembles. To this extent, emulators are valuable tools for approximating climate model runs, allowing for exploration of the model uncertainty space surrounding select climate variables at a significantly reduced computational cost. Most emulators, however, operate at annual to seasonal timescales, leaving out monthly information that may be essential to assessing climate impacts. This study extends the framework of an existing spatially resolved, annual-scale Earth System Model (ESM) emulator (MESMER, Beusch et al. 2020) by a monthly downscaling module (MESMER-M), thus providing local monthly temperatures from local yearly temperatures. We first linearly represent the mean response of the monthly temperature cycle to yearly temperatures using a simple harmonic model, thus maintaining month to month correlations and capturing changes in intra-annual variability. We then construct a month-specific local variability module which generates spatio-temporally correlated residuals with month and yearly temperature dependent skewness incorporated within. The performance of the resulting emulator is demonstrated on 38 different ESMs from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The emulator is furthermore benchmarked using a simple Gradient Boosting Regressor based, physical model trained on biophysical information. We find that while regional-scale, biophysical feedbacks may induce non-uniformities in the yearly to monthly temperature downscaling relationship, statistical emulation of regional effects shows comparable skill to approaches with physical representation. Thus, MESMER-M is able to generate ESM-like, large initial-condition ensembles of spatially explicit monthly temperature fields, thereby providing monthly temperature probability distributions which are of critical value to impact assessments. 

2012 ◽  
Vol 5 (3) ◽  
pp. 2811-2842 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett

Abstract. Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


2021 ◽  
Author(s):  
Ralf Döscher ◽  
Mario Acosta ◽  
Andrea Alessandri ◽  
Peter Anthoni ◽  
Almut Arneth ◽  
...  

Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.


2021 ◽  
Author(s):  
Bouwe Andela ◽  
Fakhereh Alidoost ◽  
Lukas Brunner ◽  
Jaro Camphuijsen ◽  
Bas Crezee ◽  
...  

<p>The Earth System Model Evaluation Tool (ESMValTool) is a free and open-source community diagnostic and performance metrics tool for the evaluation of Earth system models such as those participating in the Coupled Model Intercomparison Project (CMIP). Version 2 of the tool (Righi et al. 2020, www.esmvaltool.org) features a brand new design composed of a core that finds and processes data according to a ‘recipe’ and an extensive collection of ready-to-use recipes and associated diagnostic codes for reproducing results from published papers. Development and discussion of the tool (mostly) takes place in public on https://github.com/esmvalgroup and anyone with an interest in climate model evaluation is welcome to join there.</p><p> </p><p>Since the initial release of version 2 in the summer of 2020, many improvements have been made to the tool. It is now more user friendly with extensive documentation available on docs.esmvaltool.org and a step by step online tutorial. Regular releases, currently planned three times a year, ensure that recent contributions become available quickly while still ensuring a high level of quality control. The tool can be installed from conda, but portable docker and singularity containers are also available.</p><p> </p><p>Recent new features include a more user-friendly command-line interface, citation information per figure including CMIP6 data citation using ES-DOC, more and faster preprocessor functions that require less memory, automatic corrections for a larger number of CMIP6 datasets, support for more observational and reanalysis datasets, and more recipes and diagnostics.</p><p> </p><p>The tool is now also more reliable, with improved automated testing through more unit tests for the core, as well as a recipe testing service running at DKRZ for testing the scientific recipes and diagnostics that are bundled into the tool. The community maintaining and developing the tool is growing, making the project less dependent on individual contributors. There are now technical and scientific review teams that review new contributions for technical quality and scientific correctness and relevance respectively, two new principal investigators for generating a larger support base in the community, and a newly created user engagement team that is taking care of improving the overall user experience.</p>


2020 ◽  
Author(s):  
Christopher T. Reinhard ◽  
Stephanie Olson ◽  
Sandra Kirtland Turner ◽  
Cecily Pälike ◽  
Yoshiki Kanzaki ◽  
...  

Abstract. The methane (CH4) cycle is a key component of the Earth system that links planetary climate, biological metabolism, and the global biogeochemical cycles of carbon, oxygen, sulfur, and hydrogen. However, currently lacking is a numerical model capable of simulating a diversity of environments in the ocean where CH4 can be produced and destroyed, and with the flexibility to be able to explore not only relatively recent perturbations to Earth’s CH4 cycle but also to probe CH4 cycling and associated climate impacts under the very low-O2 conditions characteristic of most of Earth history and likely widespread on other Earth-like planets. Here, we present a refinement and expansion of the ocean-atmosphere CH4 cycle in the intermediate-complexity Earth system model cGENIE, including parameterized atmospheric O2-O3-CH4 photochemistry and schemes for microbial methanogenesis, aerobic methanotrophy, and anaerobic oxidation of methane (AOM). We describe the model framework, compare model parameterizations against modern observations, and illustrate the flexibility of the model through a series of example simulations. Though we make no attempt to rigorously tune default model parameters, we find that simulated atmospheric CH4 levels and marine dissolved CH4 distributions are generally in good agreement with empirical constraints for the modern and recent Earth. Finally, we illustrate the model’s utility in understanding the time-dependent behavior of the CH4 cycle resulting from transient carbon injection into the atmosphere, and present model ensembles that examine the effects of atmospheric pO2, oceanic dissolved SO42− and the thermodynamics of microbial metabolism on steady-state atmospheric CH4 abundance. Future model developments will address the sources and sinks of CH4 associated with the terrestrial biosphere and marine CH4 gas hydrates, both of which will be essential for comprehensive treatment of Earth’s CH4 cycle during geologically recent time periods.


2020 ◽  
Vol 13 (2) ◽  
pp. 717-734 ◽  
Author(s):  
Nicholas A. Davis ◽  
Sean M. Davis ◽  
Robert W. Portmann ◽  
Eric Ray ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Specified dynamics (SD) schemes relax the circulation in climate models toward a reference meteorology to simulate historical variability. These simulations are widely used to isolate the dynamical contributions to variability and trends in trace gas species. However, it is not clear if trends in the stratospheric overturning circulation are properly reproduced by SD schemes. This study assesses numerous SD schemes and modeling choices in the Community Earth System Model (CESM) Whole Atmosphere Chemistry Climate Model (WACCM) to determine a set of best practices for reproducing interannual variability and trends in tropical stratospheric upwelling estimated by reanalyses. Nudging toward the reanalysis meteorology as is typically done in SD simulations does not accurately reproduce lower-stratospheric upwelling trends present in the underlying reanalysis. In contrast, nudging to anomalies from the climatological winds or anomalies from the zonal-mean winds and temperatures better reproduces trends in lower-stratospheric upwelling, possibly because these schemes do not disrupt WACCM's climatology. None of the schemes substantially alter the structure of upwelling trends – instead, they make the trends more or less AMIP-like. An SD scheme's performance in simulating the acceleration of the shallow branch of the mean meridional circulation from 1980 to 2017 hinges on its ability to simulate the downward shift of subtropical lower-stratospheric wave momentum forcing. Key to this is not nudging the zonal-mean temperature field. Gravity wave momentum forcing, which drives a substantial fraction of the upwelling in WACCM, cannot be constrained by nudging and presents an upper limit on the performance of these schemes.


2019 ◽  
Vol 12 (7) ◽  
pp. 3099-3118 ◽  
Author(s):  
Kristian Strommen ◽  
Hannah M. Christensen ◽  
Dave MacLeod ◽  
Stephan Juricke ◽  
Tim N. Palmer

Abstract. We introduce and study the impact of three stochastic schemes in the EC-Earth climate model: two atmospheric schemes and one stochastic land scheme. These form the basis for a probabilistic Earth system model in atmosphere-only mode. Stochastic parametrization have become standard in several operational weather-forecasting models, in particular due to their beneficial impact on model spread. In recent years, stochastic schemes in the atmospheric component of a model have been shown to improve aspects important for the models long-term climate, such as El Niño–Southern Oscillation (ENSO), North Atlantic weather regimes, and the Indian monsoon. Stochasticity in the land component has been shown to improve the variability of soil processes and improve the representation of heatwaves over Europe. However, the raw impact of such schemes on the model mean is less well studied. It is shown that the inclusion of all three schemes notably changes the model mean state. While many of the impacts are beneficial, some are too large in amplitude, leading to significant changes in the model's energy budget and atmospheric circulation. This implies that in order to maintain the benefits of stochastic physics without shifting the mean state too far from observations, a full re-tuning of the model will typically be required.


2018 ◽  
Vol 33 (6) ◽  
pp. 325-331
Author(s):  
Ilya A. Chernov ◽  
Nikolay G. Iakovlev

Abstract In the present paper we consider the first results of modelling the World Ocean biogeochemistry system within the framework of the Earth system model: a global atmosphere-ocean-ice-land-biogeochemistry model. It is based on the INMCM climate model (version INMCM39) coupled with the pelagic ecosystem model BFM. The horizontal resolution was relatively low: 2∘ × 2.5∘ for the ‘longitude’ and ‘latitude’ in transformed coordinates with the North Pole moved to land, 33 non-equidistant σ-horizons, 1 hour time step. We have taken into account 54 main rivers worldwide with run–off supplied by the atmosphere submodel. The setup includes nine plankton groups, 60 tracers in total. Some components sink with variable speed. We discuss challenges of coupling the BFM with the σ-coordinate ocean model. The presented results prove that the model output is realistic in comparison with the observed data, the numerical efficiency is high enough, and the coupled model may serve as a basis for further simulations of the long-term climate change.


2012 ◽  
Vol 5 (3) ◽  
pp. 2527-2569 ◽  
Author(s):  
T. Sueyoshi ◽  
R. Ohgaito ◽  
A. Yamamoto ◽  
M. O. Chikamoto ◽  
T. Hajima ◽  
...  

Abstract. The importance of climate model evaluation using paleoclimate simulations for better future climate projections has been recognized by the Intergovernmental Panel on Climate Change. In recent years, Earth System Models (ESMs) were developed to investigate carbon-cycle climate feedback, as well as to project the future climate. Paleoclimate events, especially those associated with the variations in atmospheric CO2 level or land vegetation, provide suitable benchmarks to evaluate ESMs. Here we present implementations of the paleoclimate experiments proposed by the Coupled Model Intercomparison Project phase 5/Paleoclimate Modelling Intercomparison Project phase 3 (CMIP5/PMIP3) using an Earth System Model, MIROC-ESM. In this paper, experimental settings and procedures of the mid-Holocene, the Last Glacial Maximum, and the Last Millennium experiments are explained. The first two experiments are time slice experiments and the last one is a transient experiment. The complexity of the model requires various steps to correctly configure the experiments. Several basic outputs are also shown.


2020 ◽  
Author(s):  
Fulden Batıbeniz ◽  
Barış Önol ◽  
Ufuk Utku Turuncoglu

<p>Tropical-like Mediterranean storms associated with strong winds, low pressure centers and extreme precipitation are called medicanes. These devastating storms threaten the coastal regions and some small islands in the Mediterranean. Recent studies including future climate projections indicate that the intensity of medicanes could increase under the climate change conditions. Therefore it is important to improve a comprehensive understanding of the medicanes and theirs occurrence processes including thermodynamic mechanisms between the atmosphere and the sea. In pursuing these mechanisms, we use reanalysis/observations (ECMWF’s ERA5 and MyOCEAN etc.) and coupled Regional Earth System Model (RegESM). The RegESM model is run in coupled mode (Regional Climate Model-RegCM4-12km coupled with Regional Ocean Modelling System-ROMS-1/12<sup>°</sup>, and Wave Model-WAM-0.125<sup>°</sup>) and uncoupled mode (RegCM4 only-12km) for 1979-2012 period over the Med-CORDEX domain prescribed under the CORDEX framework. Additionally, standalone simulation of RegCM4 has been forced by Era-Interim Reanalysis over the Med-CORDEX domain and the standalone simulation of the wave model (WAM) has been forced by the standalone RegCM4 wind field (12 km horizontal resolution) for the Mediterranean Sea.</p><p>We analyze the ability of the coupled and uncoupled models to reproduce the characteristics of the observed medicanes and to investigate the role of air-sea interaction in the simulation of key processes that govern medicane occurrences over the study area. In general, the spatial extent and the timing of the observed medicanes better simulated with the coupled model. The reason behind this better replication with the coupled model is the wave model’s interactive contribution with the roughness length to the surface winds, which allows necessary conditions for medicane formation. Our results also reveals that the recently developed modeling system RegESM incorporates atmosphere, ocean and wave components and thereby is better capable to improve the understanding of the mechanisms driving medicanes.</p><p><strong>Keywords </strong>Regional earth system model, Ocean-atmosphere-wave coupling, Medicanes</p><p><strong>Acknowledgements</strong> This study has been supported by a research grant 40248 by the Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU) and  a research grant (116Y136) provided by The Scientific and Technological Research Council of Turkey (TUBITAK). The computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHEM) under grant number 5004782017.</p>


2014 ◽  
Vol 28 (1) ◽  
pp. 272-291 ◽  
Author(s):  
Daniela Dalmonech ◽  
Sönke Zaehle ◽  
Gregor J. Schürmann ◽  
Victor Brovkin ◽  
Christian Reick ◽  
...  

Abstract The capacity of earth system models (ESMs) to make reliable projections of future atmospheric CO2 and climate is strongly dependent on the ability of the land surface model to adequately simulate the land carbon (C) cycle. Defining “adequate” performance of the land model requires an understanding of the contributions of climate model and land model errors to the land C cycle. Here, a benchmarking framework is applied based on significant, observed characteristics of the land C cycle for the contemporary period, for which sufficient evaluation data are available, to test the ability of the JSBACH land surface component of the Max Planck Institute Earth System Model (MPI-ESM) to simulate land C trends. Particular attention is given to the role of potential effects caused by climate biases, and therefore investigation is made of the results of model configurations in which JSBACH is interactively “coupled” to atmosphere and ocean components and of an “uncoupled” configuration, where JSBACH is driven by reconstructed meteorology. The ability of JSBACH to simulate the observed phase of phenology and seasonal C fluxes is not strongly affected by climate biases. Contrarily, noticeable differences in the simulated gross primary productivity and land C stocks emerge between coupled and uncoupled configurations, leading to significant differences in the decadal terrestrial C balance and its sensitivity to climate. These differences are strongly controlled by climate biases of the MPI-ESM, in particular those affecting soil moisture. To effectively characterize model performance, the potential effects of climate biases on the land C dynamics need to be considered during the development and calibration of land surface models.


Sign in / Sign up

Export Citation Format

Share Document