scholarly journals Climate change impact on available water resources obtained using multiple global climate and hydrology models

2013 ◽  
Vol 4 (1) ◽  
pp. 129-144 ◽  
Author(s):  
S. Hagemann ◽  
C. Chen ◽  
D. B. Clark ◽  
S. Folwell ◽  
S. N. Gosling ◽  
...  

Abstract. Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological models (eight) were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

2012 ◽  
Vol 3 (2) ◽  
pp. 1321-1345 ◽  
Author(s):  
S. Hagemann ◽  
C. Chen ◽  
D. B. Clark ◽  
S. Folwell ◽  
S. N. Gosling ◽  
...  

Abstract. Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological models (eight) were used to systematically assess the hydrological response to climate change and project the future state of global water resources. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change. But there are also areas showing a robust change signal, such as at high latitudes and in some mid-latitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence. In many catchments an increase of available water resources is expected but there are some severe decreases in central and Southern Europe, the Middle East, the Mississippi river basin, Southern Africa, Southern China and south eastern Australia.


2010 ◽  
Vol 7 (3) ◽  
pp. 3159-3188 ◽  
Author(s):  
Y. Huang ◽  
W. F. Yang ◽  
L. Chen

Abstract. Doubtlessly, global climate change and its impacts have caught increasing attention from all sectors of the society world-widely. Among all those affected aspects, hydrological circle has been found rather sensitive to climate change. Climate change, either as the result or as the driving-force, has intensified the uneven distribution of water resources in the Changjiang (Yangtze) River basin, China. In turn, drought and flooding problems have been aggravated which has brought new challenges to current hydraulic works such as dike or reservoirs which were designed and constructed based on the historical hydrological characteristics, yet has been significantly changed due to climate change impact. Thus, it is necessary to consider the climate change impacts in basin planning and water resources management, currently and in the future. To serve such purpose, research has been carried out on climate change impact on water resources (and hydrological circle) in Changjiang River. The paper presents the main findings of the research, including main findings from analysis of historical hydro-meteorological data in Changjiang River, and runoff change trends in the future using temperature and precipitation predictions calculated based on different emission scenarios of the 24 Global Climate Modes (GCMs) which has been used in the 4th IPCC assessment report. In this research, two types of macro-scope statistical and hydrological models were developed to simulate runoff prediction. Concerning the change trends obtained from the historical data and the projection from GCMs results, the trend of changes in water resources impacted by climate change was analyzed for Changjiang River. Uncertainty of using the models and data were as well analyzed.


Author(s):  
Yacouba Yira ◽  
Tariro Cynthia Mutsindikwa ◽  
Aymar Yaovi Bossa ◽  
Jean Hounkpè ◽  
Seyni Salack

Abstract. This study evaluates the impact of future climate change (CC) on the hydropower generation potential of the Bamboi catchment (Black Volta) in West Africa using a conceptual rainfall-runoff model (HBV light) and regional climate models (RCMs)–global climate models (GCMs). Two climate simulation datasets MPI-ESM-REMO (CORDEX) and GFDL-ESM2M-WRF (WASCAL) under RCP4.5 were applied to the validated hydrological model to simulate the catchment runoff. Based on reference and future simulated discharges, a theoretical 1.3 MW run of river hydro power plant was designed to evaluate the hydropower generation. Hydrological and hydropower generation changes were expressed as the relative difference between two future periods (2020–2049 and 2070–2099) and a reference period (1983–2005). The climate models' ensemble projected a mean annual precipitation increase by 8.8 % and 7.3 % and discharge increase by 11.4 % and 9.735 % for the 2020–2049 and 2070–2099 periods respectively (for bias corrected data). On the contrary an overall decrease of hydropower generation by −9.1 % and −8.4% for the 2020–2049 and 2070–2099 periods was projected respectively. The results indicate that projected increases in discharge should not solely be considered as leading to an increase in hydropower potential when prospecting climate change impact on hydropower.


2012 ◽  
Vol 13 (3) ◽  
pp. 1094-1106 ◽  
Author(s):  
J. Teng ◽  
F. H. S. Chiew ◽  
J. Vaze ◽  
S. Marvanek ◽  
D. G. C. Kirono

Abstract This paper presents the climate change impact on mean annual runoff across continental Australia estimated using the Budyko and Fu equations informed by projections from 15 global climate models and compares the estimates with those from extensive hydrological modeling. The results show runoff decline in southeast and far southwest Australia, but elsewhere across the continent there is no clear agreement between the global climate models in the direction of future precipitation and runoff change. Averaged across large regions, the estimates from the Budyko and Fu equations are reasonably similar to those from the hydrological models. The simplicity of the Budyko equation, the similarity in the results, and the large uncertainty in global climate model projections of future precipitation suggest that the Budyko equation is suitable for estimating climate change impact on mean annual runoff across large regions. The Budyko equation is particularly useful for data-limited regions, for studies where only estimates of climate change impact on long-term water availability are needed, and for investigative assessments prior to a detailed hydrological modeling study. The Budyko and Fu equations are, however, limited to estimating the change in mean annual runoff for a given change in mean annual precipitation and potential evaporation. The hydrological models, on the other hand, can also take into account potential changes in the subannual and other climate characteristics as well as provide a continuous simulation of daily and monthly runoff, which is important for many water availability studies.


2017 ◽  
Vol 7 (4) ◽  
pp. 255-262
Author(s):  
Vahid Ashrafi

In recent decades, climate change in Iran has led to the introduction of specific plants that have less water requirement than policymakers. Saffron cultivation has a long history in Iran and saffron was ranked as one of these figures on the agenda of policymakers. Here we presented the evaluation of Climate Change Impact on Saffron Water Requirement by GIS Modeling in Ardabil Provincel. We spot periods 1992-2017 and 2017-2040 as base and future period, respectively. For CCCSN, the data from five global climate models (GCMs) from the CGCM3T47 archive were selected that cover three ‘Representative Concentration Pathways’ (RCPs) scenarios. Potential evapotranspiration is estimated by Torrent White method. The accuracy of models at base period was determined by evaluation criteria, such as the RMSE, R2. Results showed that accuracy of CGCM3T47 model on A1B scenario was higher than other AOGCM models which used on base term. Also, it illustrated that water requirement will rise in all capable regions of state on 2040. In universal, average of addition of water requirement is 67, where in Germi, capital of state, we will have maximum variations by 95 mm ascension for the year 2040. Also, pole of production saffron in state, Bilasvar will have 40 mm ascension in saffron water requirement. Mean water requirement of saffron will be constantly increasing. In the meanwhile, the index of 425.52 mm for the year 2017 to 487.61 mm for the year 2040 were performed.


2011 ◽  
Vol 15 (11) ◽  
pp. 3511-3527 ◽  
Author(s):  
T. Liu ◽  
P. Willems ◽  
X. L. Pan ◽  
An. M. Bao ◽  
X. Chen ◽  
...  

Abstract. The Tarim river basin in China is a huge inland arid basin, which is expected to be highly vulnerable to climatic changes, given that most water resources originate from the upper mountainous headwater regions. This paper focuses on one of these headwaters: the Kaidu river subbasin. The climate change impact on the surface and ground water resources of that basin and more specifically on the hydrological extremes were studied by using both lumped and spatially distributed hydrological models, after simulation of the IPCC SRES greenhouse gas scenarios till the 2050s. The models include processes of snow and glacier melting. The climate change signals were extracted from the grid-based results of general circulation models (GCMs) and applied on the station-based, observed historical data using a perturbation approach. For precipitation, the time series perturbation involves both a wet-day frequency perturbation and a quantile perturbation to the wet-day rainfall intensities. For temperature and potential evapotranspiration, the climate change signals only involve quantile based changes. The perturbed series were input into the hydrological models and the impacts on the surface and ground water resources studied. The range of impact results (after considering 36 GCM runs) were summarized in high, mean, and low results. It was found that due to increasing precipitation in winter, snow accumulation increases in the upper mountainous areas. Due to temperature rise, snow melting rates increase and the snow melting periods are pushed forward in time. Although the qualitive impact results are highly consistent among the different GCM runs considered, the precise quantitative impact results varied significantly depending on the GCM run and the hydrological model.


Sign in / Sign up

Export Citation Format

Share Document