scholarly journals The Utah urban carbon dioxide (UUCON) and Uintah Basin greenhouse gas networks: instrumentation, data, and measurement uncertainty

2019 ◽  
Vol 11 (3) ◽  
pp. 1291-1308 ◽  
Author(s):  
Ryan Bares ◽  
Logan Mitchell ◽  
Ben Fasoli ◽  
David R. Bowling ◽  
Douglas Catharine ◽  
...  

Abstract. The Utah Urban CO2 Network (UUCON) is a network of near-surface atmospheric carbon dioxide (CO2) measurement sites aimed at quantifying long-term changes in urban and rural locations throughout northern Utah since 2001. We document improvements to UUCON made in 2015 that increase measurement precision, standardize sampling protocols, and expand the number of measurement locations to represent a larger region in northern Utah. In a parallel effort, near-surface CO2 and methane (CH4) measurement sites were assembled as part of the Uintah Basin greenhouse gas (GHG) network in a region of oil and natural gas extraction located in northeastern Utah. Additional efforts have resulted in automated quality control, calibration, and visualization of data through utilities hosted online (https://air.utah.edu, last access: 22 August 2019). These improvements facilitate atmospheric modeling efforts and quantify atmospheric composition in urban and rural locations throughout northern Utah. Here we present an overview of the instrumentation design and methods within UUCON and the Uintah Basin GHG networks as well as describe and report measurement uncertainties using a broadly applicable and novel method. Historic and modern data described in this paper are archived with the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) and can be found at https://doi.org/10.7289/V50R9MN2 (Mitchell et al., 2018c) and https://doi.org/10.25921/8vaj-bk51 (Bares et al., 2018a) respectively.

2019 ◽  
Author(s):  
Ryan Bares ◽  
Logan Mitchell ◽  
Ben Fasoli ◽  
David Bowling ◽  
Douglas Catharine ◽  
...  

Abstract. The Utah Urban CO2 Network (UUCON) is a network of near-surface atmospheric carbon dioxide (CO2) measurement sites aimed at quantifying long-term changes in urban and rural locations throughout northern Utah since 2001. We document improvements to UUCON made in 2015 that increase measurement precision, standardize sampling protocols, and expand the number of measurement locations to represent a larger region in northern Utah. In a parallel effort, near-surface CO2 and methane (CH4) measurement sites were assembled as part of the Uintah Basin Greenhouse Gas (GHG) network in a region of oil and natural gas extraction located in northeastern Utah. Additional efforts have resulted in automated quality control, calibration, and visualization of data through utilities hosted online (http://https://air.utah.edu). These improvements facilitate atmospheric modeling efforts and quantify atmospheric composition in urban and rural locations throughout northern Utah. Here we present an overview of the instrumentation design and methods within UUCON and the Uintah Basin GHG networks as well as describe and report measurement uncertainties using a broadly applicable and novel method. Historic and modern data described in this paper are archived with the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) and can be found at https://doi.org/10.7289/V50R9MN2 and https://doi.org/10.25921/8vaj-bk51 respectively


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


2008 ◽  
Vol 25 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
C. Paton-Walsh ◽  
R. L. Mittermeier ◽  
W. Bell ◽  
H. Fast ◽  
N. B. Jones ◽  
...  

Abstract The authors report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2), and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organized by the Network for the Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3%, and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers.


Author(s):  
Lisa Kemmerer

Cheap meat, dairy, and eggs are an illusion—we pay for each with depleted forests, polluted freshwater, soil degradation, and climate change. Diet is the most critical decision we make with regard to our environmental footprint—and what we eat is a choice that most of us make every day, several times a day. Dietary choice contributes powerfully to greenhouse gas emissions (GHGE) and water pollution. Animal agriculture is responsible for an unnerving quantity of greenhouse gas emissions. Eating animal products—yogurt, ice cream, bacon, chicken salad, beef stroganoff, or cheese omelets—greatly increases an individual’s contribution to carbon dioxide, methane, and nitrous oxide emissions. Collectively, dietary choice contributes to a classic “tragedy of the commons.” Much of the atmosphere’s carbon dioxide (CO2) is absorbed by the earth’s oceans and plants, but a large proportion lingers in the atmosphere—unable to be absorbed by plants or oceans (“Effects”). Plants are not harmed by this process, but the current overabundance of carbon dioxide in the atmosphere causes acidification of the earth’s oceans. As a result of anthropogenic carbon dioxide emissions, the “acidity of the world’s ocean may increase by around 170% by the end of the century,” altering ocean ecosystems, and likely creating an ocean environment that is inhospitable for many life forms (“Expert Assessment”). Burning petroleum also leads to wars that devastate human communities and annihilate landscapes and wildlife—including endangered species and their vital habitats. Additionally, our consumption of petroleum is linked with oil spills that ravage landscapes, shorelines, and ocean habitat. Oil pipelines run through remote, fragile areas—every oil tanker represents not just the possibility but the probability of an oil spill. As reserves diminish, our quest for fossil fuels is increasingly environmentally devastating: Canada’s vast reserves of tar sands oil—though extracted, transported, and burned only with enormous costs to the environment—are next in line for extraction. Consuming animal products creates ten times more fossil fuel emission per calorie than does consuming plant foods directly (Oppenlander 18). (This is the most remarkable given that plant foods are not generally as calorically dense as animal foods.) Ranching is the greatest GHGE offender.


2016 ◽  
Author(s):  
Saulo R. Freitas ◽  
Jairo Panetta ◽  
Karla M. Longo ◽  
Luiz F. Rodrigues ◽  
Demerval S. Moreira ◽  
...  

Abstract. We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.


2019 ◽  
Vol 48 (4) ◽  
pp. 935-944 ◽  
Author(s):  
Yu Chen ◽  
Laurent Serteyn ◽  
Zhenying Wang ◽  
KangLai He ◽  
Frederic Francis

Abstract In the current context of global climate change, atmospheric carbon dioxide (CO2) concentrations are continuously rising with potential influence on plant–herbivore interactions. The effect of elevated CO2 (eCO2) on feeding behavior of corn leaf aphid, Rhopalosiphum maidis (Fitch) on barley seedlings Hordeum vulgare L. was tracked using electrical penetration graph (EPG). The nutrient content of host plant and the developmental indexes of aphids under eCO2 and ambient CO2 (aCO2) conditions were also investigated. Barley seedlings under eCO2 concentration had lower contents of crude protein and amino acids. EPG analysis showed the plants cultivated under eCO2 influenced the aphid feeding behavior, by prolonging the total pre-probation time of the aphids (wandering and locating the feeding site) and the ingestion of passive phloem sap. Moreover, fresh body weight, fecundity and intrinsic population growth rate of R. maidis was significantly decreased in eCO2 in contrast to aCO2 condition. Our findings suggested that changes in plant nutrition caused by eCO2, mediated via the herbivore host could affect insect feeding behavior and population dynamics.


2014 ◽  
Vol 7 (8) ◽  
pp. 8101-8123
Author(s):  
B. Xiang ◽  
D. D. Nelson ◽  
J. B. McManus ◽  
M. S. Zahniser ◽  
R. Wehr ◽  
...  

Abstract. We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.


2009 ◽  
Vol 60 (8) ◽  
pp. 697 ◽  
Author(s):  
Mahabubur Mollah ◽  
Rob Norton ◽  
Jeff Huzzey

The AGFACE project commenced in June 2007 at Horsham (36°45′07″S, 142°06′52″E; 127 m elevation), Victoria, Australia. Its aim is to quantify the interactive effects of elevated atmospheric carbon dioxide concentration (e[CO2]), nitrogen, temperature (accomplished by early and late sowing times), and soil moisture on the growth, yield, and water use of wheat (Triticum aestivum L.) under Australian conditions. The main engineering goal of the project was to maintain an even temporal and spatial distribution of carbon dioxide (CO2) at 550 μmol/mol within AGFACE rings containing the experimental treatments. Monitoring showed that e[CO2] at the ring-centres was maintained at or above 90% of the target (495 μmol/mol) between 93 and 98% of the operating time across the 8 rings and within ±10% of the target (495–605 μmol/mol) between 86 and 94% of the time. The carbon dioxide concentration ([CO2]) measured inside the rings declined non-linearly with increasing distance downwind of the CO2 source and differed by 3–13% in concentration between the two canopy heights in each ring, but was not affected by wind speed or small variations in [CO2] at the ring-centres. The median values for model-predicted concentrations within the inner 11-m-diameter portion of the rings (>80% of the ring area) varied between 524 and 871 μmol/mol but remained close to target near the centres. The design criteria adopted from existing pure CO2 fumigating FACE systems and new ideas incorporated in the AGFACE system provided a performance similar to its equivalent systems. This provides confidence in the results that will be generated from experiments using the AGFACE system.


2016 ◽  
Vol 9 (9) ◽  
pp. 4737-4757 ◽  
Author(s):  
Christoph Zellweger ◽  
Lukas Emmenegger ◽  
Mohd Firdaus ◽  
Juha Hatakka ◽  
Martin Heimann ◽  
...  

Abstract. Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.


2016 ◽  
Vol 16 (12) ◽  
pp. 7867-7878 ◽  
Author(s):  
Christian Frankenberg ◽  
Susan S. Kulawik ◽  
Steven C. Wofsy ◽  
Frédéric Chevallier ◽  
Bruce Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite – GOSAT, Thermal Emission Sounder – TES, Atmospheric Infrared Sounder – AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


Sign in / Sign up

Export Citation Format

Share Document