scholarly journals The Database of the Active Faults of Eurasia (AFEAD): Ontology and Design behind the Continental-Scale Dataset

2021 ◽  
Author(s):  
Egor Zelenin ◽  
Dmitry Bachmanov ◽  
Sofya Garipova ◽  
Vladimir Trifonov ◽  
Andrey Kozhurin

Abstract. Active faults are those faults on which movement is possible in the future. It draws particular attention to active faults in geodynamic studies and seismic hazard assessment. Here we present a high-detail continental-scale geodatabase: The Active Faults of Eurasia Database (AFEAD). It comprises 46,775 objects stored in the shapefile format with spatial detail sufficient for a map of scale 1:1M. Fault sense, a rank of confidence in activity, a rank of slip rate, and a reference to source publications are provided for each database entry. Where possible, it is supplemented with a fault name, fault zone name, abbreviated fault parameters (e.g., slip rate, age of the last motion, total offset), and text information from the sources. The database was collected from 612 sources, including regional maps, databases, and research papers. AFEAD facilitates a spatial search for local studies. It provides sufficient detail for planning a study of a particular fault system and guides deeper bibliographical investigations if needed. This scenario is particularly significant for vast Central and North Asia areas, where most studies are available only in Russian and hardcopy. Moreover, the database model provides the basis for GIS-based regional and continental-scale integrative studies. The database is available at https://doi.org/10.13140/RG.2.2.10333.74726 and via web map at http://neotec.ginras.ru/index/mapbox/database_map.html (last access: July 30, 2021). Some database representations with supplementary data are hosted at http://neotec.ginras.ru/index/english/database_eng.html.

Author(s):  
Thomas Chartier ◽  
Oona Scotti ◽  
Hélène Lyon-Caen ◽  
Aurélien Boiselet

Abstract. Modelling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (Fault to Fault -FtF- ruptures). The latest Californian model (UCERF-3) takes into account this possibility by considering a system level approach rather than an individual fault level approach using the geological , seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information long fault networks are often not well constrained. There is therefore a need to propose a methodology relying only on geological information to compute earthquake rate of the faults in the network. In this methodology, similarly to UCERF-3, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an imposed shape and the rate of earthquakes on each fault is determined by the specific slip-rate of each segment depending on the possible FtF ruptures. The modelled earthquake rates are then confronted to the available independent data (geodetical, seismological and paleoseismological data) in order to weigh different hypothesis explored in a logic tree. The methodology is tested on the Western Corinth Rift, Greece (WCR) where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ~15 mm/yr North-South extension. Modelling results show that geological, seismological extension rates and paleoseismological rates of earthquakes cannot be reconciled with only single fault rupture scenarios and require hypothesising a large spectrum of possible FtF rupture sets. Furthermore, in order to fit the imposed regional Gutenberg-Richter MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, individual fault’s MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modelled earthquake rupture rates with those deduced from the regional and local earthquake catalogue statistics and local paleosismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on a 5 km rather than 3 km, suggesting, a high connectivity of faults in the WCR fault system.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Daisuke Ishimura ◽  
Hiroyuki Tsutsumi ◽  
Shinji Toda ◽  
Yo Fukushima ◽  
Yasuhiro Kumahara ◽  
...  

AbstractThe Mw7.0 2016 Kumamoto earthquake occurred on the previously mapped Futagawa–Hinagu fault causing significant strong ground motions. A ~ 30-km-long dextral surface rupture appeared on the major fault zone and dextral slip was up to 2–3 m. However, the surface ruptures were also broadly and remotely distributed approximately 10 km away from the primary rupture zone. These numerous distributed secondary surface slips with vertical displacement of less than a few tens of centimeters were detected by the interferometric synthetic aperture radar (InSAR) technology in previous studies. Such displacements occurred not only on previously mapped faults but also on unknown traces. Here, we addressed the following fundamental issues: whether the broadly distributed faults were involved in the past major earthquakes in the neighborhood, and how the fault topography of such secondary faults develops, seismically or aseismically. To find clues for understanding these issues, we show the results of field measurements of surface slips and paleoseismic trenching on distributed secondary faults called the Miyaji faults inside the Aso caldera, 10 km away from the eastern end of the primary rupture zone. Field observations revealed small but well-defined dextral slip surface ruptures that were consistent with vertical and dextral offsets derived from InSAR. On the trench walls, the penultimate event with vertical displacements almost similar to the 2016 event was identified. The timing of the penultimate event was around 2 ka, which was consistent with that of the primary fault and archeological information of the caldera. Considering the paleo-slip event and fault models of the Miyaji faults, they were presumed not to be source faults, and slip on these faults have been triggered by large earthquakes along major adjacent active faults. The results provide important insights into the seismic hazard assessment of low-slip-rate active faults and fault topography development due to triggered displacement along secondary faults.


2020 ◽  
Author(s):  
Octavi Gómez-Novell ◽  
María Ortuño ◽  
Julián García-Mayordomo ◽  
Eulàlia Masana ◽  
Thomas Rockwell ◽  
...  

<p>The Alhama de Murcia Fault (AMF) is one of the most seismically active faults in the Iberian Peninsula, with important associated historical and instrumental seismicity (e.g. the 1674 I<sub>EMS </sub>VIII and 2011 Mw 5.1 Lorca earthquakes), and numerous geomorphic and paleoseismic evidence of paleoearthquakes. It is an oblique left-lateral strike slip fault within the Eastern Betics Shear Zone (EBSZ), a nearly 500 km long fault system that absorbs a great part of convergence between the Nubian and Eurasian plates. Previous paleoseismic studies have mainly focused on the southwestern and especially the central segment of the fault and yielded slip rate values ranging from 1.0 up to 1.7 mm/yr. In the central segment (Lorca-Totana), the fault splays into several branches, the two frontal ones forming a pressure ridge. Paleoseismic trenches have exclusively been dug in the northwestern fault of the pressure ridge, where most of the displacement is along strike, while the expected reverse southeastern branch has never been directly observed.</p><p>We present the first results of paleoseismic trenching across a complete transect of the pressure ridge in the Lorca-Totana segment of AMF. To do so we excavated an exceptionally large trench (7 m deep) in the NW branch and 5 trenches in the SE branch. We have been able to: a) extend the paleoearthquake catalogue in the NW branch by interpreting a total of 13 paleoearthquakes, 6 of which were not identified in previous studies. A restoration analysis has been performed; b) unveil the existence and recent activity (Holocene) of the thrust that bounds the pressure ridge to the SE. We have interpreted at least 5 surface ruptures, with the last one being younger than 8-9 kyr BP, based on new radiocarbon dates.</p><p>The study of these two sites allows for the refinement of the seismic parameters of the fault, formerly inferred from the study of a single branch. In this sense, the more complete paleoearthquake catalogue will allow for reassessment of the recurrence intervals assigned to the fault and new slip rate estimates will be inferred by combining data from the two studied sites. Furthermore, forthcoming OSL dates may allow us to prove or reject the synchronicity of surface ruptures on both sides of the pressure ridge, shedding light on the rupturing style of this fault system during the Late Quaternary. We discuss how these new data on fault-interaction may affect several seismic parameters and their repercussion in source modelling for fault-based probabilistic seismic hazard assessments (PSHA) of the region.</p>


2020 ◽  
Vol 60 (1) ◽  
Author(s):  
Andrej Gosar

A recent slip-rate of an active fault is a very important seismotectonic parameter, but not easy to determine. Idrija fault, 120 km long, is a prominent geomorphologic feature with large seismogenic potential, still needed to be researched. Measurements of tectonic micro-displacements can provide insight into its recent activity. The Učja valley extends transversally to the Idrija fault and was therefore selected for the installation of TM 71 extensometer. Measurements on the crack within its inner fault zone are conducted from the year 2004. In 14 years of observations a systematic horizontal displacements with average rate of 0.21 mm/year and subordinate vertical displacements of 0.06 mm/year were established, proving the activity of this fault. An overview of methods of displacement measurements related to active faults and of newer interdisciplinary investigations of the Idrija fault is given. Displacement rates are beside for geodynamic interpretations important for improvement of seismotectonic models and thus for better seismic hazard assessment.


2021 ◽  
Author(s):  
Laurent Bollinger ◽  
Yann Klinger ◽  
Steven Forman ◽  
Odonbaatar Chimed ◽  
Amgalan Bayasgalan ◽  
...  

Abstract The spatial distribution of large earthquakes in Slowly Deforming Continental Regions (SDCR) is poorly documented and, thus, has often been deemed to be random. Unlike in high strain regions, where seismic activity concentrates cyclically along major active faults, earthquakes in SDCR may seem to occur more erratically in space and time. This questions classical fault behavior models, posing paramount issues for seismic hazard assessment. Here, we investigate the M7, 1967, Mogod earthquake in Mongolia, a region recognized as a SDCR. Despite the absence of visible cumulative deformation at the ground surface, we found evidence for at least 3 surface rupturing earthquakes during the last 50,000 years, associated to a slip-rate of 0,06 ± 0,01 mm/yr. These results show that in SDCR, like in faster deforming regions, deformation localizes on specific structures. However, the excessive length of return time for large earthquakes along these structures makes it more difficult to recognize earthquake series, and could conversely lead to the misconception that in SDCR earthquakes would be randomly located. Thus, our result emphasizes the need for systematic appraisal of the potential seismogenic structures in SDCR in order to lower the uncertainties associated with the seismogenic sources in seismic hazard models.


2018 ◽  
Vol 18 (11) ◽  
pp. 3121-3135
Author(s):  
Avith Mendoza-Ponce ◽  
Angel Figueroa-Soto ◽  
Diana Soria-Caballero ◽  
Víctor Hugo Garduño-Monroy

Abstract. The Pátzcuaro–Acambay fault system (PAFS), located in the central part of the Trans-Mexican Volcanic Belt (TMVB), is delimited by an active transtensive deformation area associated with the oblique subduction zone between the Cocos and North American plates, with a convergence speed of 55 mm yr−1 at the latitude of the state of Michoacán, Mexico. Part of the oblique convergence is transferred to this fault system, where the slip rates range from 0.009 to 2.78 mm yr−1. This has caused historic earthquakes in Central Mexico, such as the Acambay quake (Ms=6.9) on 19 November 1912 with surface rupture, and another in Maravatío in 1979 with Ms=5.6. Also, paleoseismic analyses are showing Quaternary movements in some faults, with moderate to large magnitudes. Notably, this zone is seismically active, but lacks a dense local seismic network, and more importantly, its neotectonic movements have received very little attention. The present research encompasses three investigations carried out in the PAFS. First, the estimation of the maximum possible earthquake magnitudes, based on 316 fault lengths mapped on a 15 m digital elevation model, by means of three empirical relationships. In addition, the Hurst exponent Hw and its persistence, estimated for magnitudes Mw (spatial domain) and for 32 slip-rate data (time domain) by the wavelet variance analysis. Finally, the validity of the intrinsic definition of active fault proposed here. The average results for the estimation of the maximum and minimum magnitudes expected for this fault population are 5.5≤Mw≤7. Also, supported by the results of H at the spatial domain, this paper strongly suggests that the PAFS is classified in three different zones (western PAFS, central PAFS, and eastern PAFS) in terms of their roughness (Hw=0.7,Hw=0.5,Hw=0.8 respectively), showing different dynamics in seismotectonic activity and; the time domain, with a strong persistence Hw=0.949, suggests that the periodicities of slip rates are close in time (process with memory). The fractal capacity dimension (Db) is also estimated for the slip-rate series using the box-counting method. Inverse correlation between Db and low slip-rate concentration was observed. The resulting Db=1.86 is related to a lesser concentration of low slip-rates in the PAFS, suggesting that larger faults accommodate the strain more efficiently (length ≥3 km). Thus, in terms of fractal analysis, we can conclude that these 316 faults are seismically active, because they fulfill the intrinsic definition of active faults for the PAFS.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 273-296 ◽  
Author(s):  
Fabrizio Galadini ◽  
Carlo Meletti ◽  
Eutizio Vittori

AbstractAn inventory of the available surficial data on active faults in Italy has been compiled by gathering all the available information on peninsular Italy (project by CNR, National Group for the Defense against Earthquakes), the central-eastern Alps and the Po Plain (EC ‘PALEOSIS’ project). Such information has been summarised in maps (reporting surficial expressions of faults with length L≥11 km) and in a table where fault parameters relevant for seismic hazard assessment (e.g. slip rates, recurrence intervals for surface faulting events, etc..) have been reported. Based on the geological characteristics of the Italian territory, a fault has been considered as active if it shows evidence of Late Pleistocene-Holocene displacements. Active faults in Italy are distributed throughout the entire Apennine chain, in the Sicilian and Calabrian regions and in some Alpine sectors, but knowledge is not homogeneously distributed through the territory. The largest amount of data is related to the central Apennines. In contrast, fault geometries and parameters are less well defined in the southern Apennines, Sicily and Calabria, where investigations have started more recently. Knowledge is sparse in the northern Apeninnes, where data necessary to define fault parameters are lacking and also the chronology of the activity has to be considered cautiously. Abundant blind faulting in the Po Plain hinders the detection of active faults by means of the classical surficial investigations and therefore the present knowledge is limited to the Mantova fault. Blind faults and the peculiar recent geological history of the Alpine areas, which is strongly conditioned by the erosional and depositional activity during and after the last glacial maximum, also hinder the identification of active faults in the central-eastern Alps. Some faults in this Alpine sector are believed to be active, but data on their segmentation are still missing. Available information indicates that Italian active faults are usually characterised by slip rates lower than 1 mm/yr. Recurrence intervals for surface faulting events are longer than 1,000 years in the central and southern Apennines. This review on the Italian active faults represents the first step to produce a map of the major seismic sources in Italy, which in turn will result from the merge of surficial data with seismological and geological subsurficial data. The available knowledge gathered in this paper indicates those areas where data are presently sparse. It should be, therefore, possible to better plan future geomorphological and paleoseismological investigations.


2017 ◽  
Vol 17 (10) ◽  
pp. 1857-1869 ◽  
Author(s):  
Thomas Chartier ◽  
Oona Scotti ◽  
Hélène Lyon-Caen ◽  
Aurélien Boiselet

Abstract. Modeling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (fault-to-fault, FtF, ruptures). The Uniform California Earthquake Rupture Forecast version 3 (UCERF-3) model takes into account this possibility by considering a system-level approach rather than an individual-fault-level approach using the geological, seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information along fault networks is often not well constrained. There is therefore a need to propose a methodology relying on geological information alone to compute earthquake rates of the faults in the network. In the proposed methodology, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty, similarly to UCERF-3. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an a priori chosen shape and the rate of earthquakes on each fault is determined by the specific slip rate of each segment depending on the possible FtF ruptures. The modeled earthquake rates are then compared to the available independent data (geodetical, seismological and paleoseismological data) in order to weight different hypothesis explored in a logic tree.The methodology is tested on the western Corinth rift (WCR), Greece, where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ∼ 15 mm yr−1 north–south extension. Modeling results show that geological, seismological and paleoseismological rates of earthquakes cannot be reconciled with only single-fault-rupture scenarios and require hypothesizing a large spectrum of possible FtF rupture sets. In order to fit the imposed regional Gutenberg–Richter (GR) MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, computed individual faults' MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modeled earthquake rupture rates with those deduced from the regional and local earthquake catalog statistics and local paleoseismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on 5 km rather than 3 km, suggesting a high connectivity of faults in the WCR fault system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laurent Bollinger ◽  
Yann Klinger ◽  
Steven L. Forman ◽  
Odonbaatar Chimed ◽  
Amgalan Bayasgalan ◽  
...  

AbstractThe spatial distribution of large earthquakes in slowly deforming continental regions (SDCR) is poorly documented and, thus, has often been deemed to be random. Unlike in high strain regions, where seismic activity concentrates along major active faults, earthquakes in SDCR may seem to occur more erratically in space and time. This questions classical fault behavior models, posing paramount issues for seismic hazard assessment. Here, we investigate the M7, 1967, Mogod earthquake in Mongolia, a region recognized as a SDCR. Despite the absence of visible cumulative deformation at the ground surface, we found evidence for at least 3 surface rupturing earthquakes during the last 50,000 years, associated with a slip-rate of 0.06 ± 0.01 mm/year. These results show that in SDCR, like in faster deforming regions, deformation localizes on specific structures. However, the excessive length of return time for large earthquakes along these structures makes it more difficult to recognize earthquake series, and could conversely lead to the misconception that in SDCR earthquakes would be randomly located. Thus, our result emphasizes the need for systematic appraisal of the potential seismogenic structures in SDCR in order to lower the uncertainties associated with the seismogenic sources in seismic hazard models.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joanna Faure Walker ◽  
Paolo Boncio ◽  
Bruno Pace ◽  
Gerald Roberts ◽  
Lucilla Benedetti ◽  
...  

AbstractWe present a database of field data for active faults in the central Apennines, Italy, including trace, fault and main fault locations with activity and location certainties, and slip-rate, slip-vector and surface geometry data. As advances occur in our capability to create more detailed fault-based hazard models, depending on the availability of primary data and observations, it is desirable that such data can be organized in a way that is easily understood and incorporated into present and future models. The database structure presented herein aims to assist this process. We recommend stating what observations have led to different location and activity certainty and presenting slip-rate data with point location coordinates of where the data were collected with the time periods over which they were calculated. Such data reporting allows more complete uncertainty analyses in hazard and risk modelling. The data and maps are available as kmz, kml, and geopackage files with the data presented in spreadsheet files and the map coordinates as txt files. The files are available at: 10.1594/PANGAEA.922582.


Sign in / Sign up

Export Citation Format

Share Document