scholarly journals OLYMPUS v1.0: development of an integrated air pollutant and GHG urban emissions model – methodology and calibration over greater Paris

2018 ◽  
Vol 11 (12) ◽  
pp. 5085-5111 ◽  
Author(s):  
Arthur Elessa Etuman ◽  
Isabelle Coll

Abstract. Air pollutants and greenhouse gases have many effects on health, the economy, urban climate and atmospheric environment. At the city level, the transport and heating sectors contribute significantly to air pollution. In order to quantify the impact of urban policies on anthropogenic air pollutants, the main processes leading to emissions need to be understood: they principally include mobility for work and leisure as well as household behavior, themselves impacted by a variety of social parameters. In this context, the OLYMPUS modeling platform has been designed for environmental decision support. It generates a synthetic population of individuals and defines the mobility of each individual in the city through an activity-based approach of travel demand. The model then spatializes road traffic by taking into account congestion on the road network. It also includes a module that estimates the energy demand of the territory by calculating the unit energy consumption of households and the commercial–institutional sector. Finally, the emissions associated with all the modeled activities are calculated using the COPERT emission factors for traffic and the European Environmental Agency (EEA) methodology for heating-related combustion. The comparison of emissions with AIRPARIF's regional inventory shows discrepancies that are consistent with differences in assumptions and input data, mainly in the sense of underestimation. The methodological choices and the potential ways of improvement, including the refinement of traffic congestion modeling and of the transport of goods, are discussed.

2018 ◽  
Author(s):  
Arthur Elessa Etuman ◽  
Isabelle Coll

Abstract. Air pollutants and greenhouse gases have many effects on health, economy, urban climate and atmospheric environment. At the city level, the transport and heating sectors contribute significantly to air pollution. In order to quantify the impact of urban policies on anthropogenic air pollutants, the main processes leading to emissions need to be understood: they mainly include mobility for work and leisure and household behavior, themselves impacted by a variety of social parameters. In this context, the Olympus modeling platform has been designed for environmental decision support. It generates a synthetic population of individuals and defines the mobility of each individual in the city through an activity-based approach of the travel demand. The model then spatializes road traffic taking into account congestion on the road network. It also includes a module that estimates the energy demand of the territory by calculating the unit energy consumption of households and the tertiary sector. Finally, the emissions associated with all the modeled activities are calculated using the COPERT emission factors for the traffic, and the European Environmental Agency (EEA) methodology for heating-related combustions. The comparison of emissions with AIRPARIF's regional inventory shows discrepancies that are consistent with differences in assumptions and input data, mainly in the sense of underestimation. The methodological choices, as well as the potential ways of improvement, including the refinement of traffic congestion modeling and of the transport of goods, are discussed.


2021 ◽  
Vol 9 (12) ◽  
pp. 51-57
Author(s):  
Kokou SABI ◽  
◽  
Hezouwe SONLA ◽  
Moursalou KORIKO ◽  
Kokou Eric GBEDJANGNI ◽  
...  

The automobile fleet in Togo has increased in the last decades with a patchwork of vehicles that are in majority older than ten (10) years. Until 2019, the car fleet in Togo was almost dependent upon petroleum products, and was consequentlya source of air pollutants emission. Lome is the capital city of Togo with the characteristic of having the highest road traffic volume that significantly impacts air quality. In accordance with the EMEP/EEA air pollutant emission inventory guide and the COPERT method, emissions of carbone monoxide (CO), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM) are respectively estimated to: 2621.674 tCO 82.444 tNOx 558.778 tNMVOC and 7.241 tPM. In the time series 2010-2019, emissions of CO, NMVOCs and NOx fell overall with average yearly rates by respectively 83,0234 66,4888 and 0,8073 t/year whereas the PM emission rose(0,8208 t/year).


2021 ◽  
Vol 13 (12) ◽  
pp. 2329
Author(s):  
Elżbieta Macioszek ◽  
Agata Kurek

Continuous, automatic measurements of road traffic volume allow the obtaining of information on daily, weekly or seasonal fluctuations in road traffic volume. They are the basis for calculating the annual average daily traffic volume, obtaining information about the relevant traffic volume, or calculating indicators for converting traffic volume from short-term measurements to average daily traffic volume. The covid-19 pandemic has contributed to extensive social and economic anomalies worldwide. In addition to the health consequences, the impact on travel behavior on the transport network was also sudden, extensive, and unpredictable. Changes in the transport behavior resulted in different values of traffic volume on the road and street network than before. The article presents road traffic volume analysis in the city before and during the restrictions related to covid-19. Selected traffic characteristics were compared for 2019 and 2020. This analysis made it possible to characterize the daily, weekly and annual variability of traffic volume in 2019 and 2020. Moreover, the article attempts to estimate daily traffic patterns at particular stages of the pandemic. These types of patterns were also constructed for the weeks in 2019 corresponding to these stages of the pandemic. Daily traffic volume distributions in 2020 were compared with the corresponding ones in 2019. The obtained results may be useful in terms of planning operational and strategic activities in the field of traffic management in the city and management in subsequent stages of a pandemic or subsequent pandemics.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 865.1-865
Author(s):  
H. H. Chen ◽  
W. C. Chao ◽  
Y. H. Chen ◽  
D. Y. Chen ◽  
C. H. Lin

Background:Interstitial lung disease (ILD) is characterized by progressive inflammation and fibrosis, and accumulating evidence have shown that exposure to air pollutants was associated with the development of ILD. Autoimmune diseases are highly correlated with ILD, including connective tissue disease-associated ILD (CTD-ILD) as well as interstitial pneumonia with autoimmune features (IPAF), and the development of ILD is a crucial cause of morbidity and mortality in patients with autoimmune diseases. One recent Taiwanese study reported that exposure to air pollutants was associated with incident systemic lupus erythematosus (SLE). However, the impact of air pollutants on the development of ILD among patients with autoimmune diseases remains unknown.Objectives:The study aimed to address the impact of accumulating exposure to air pollutant above moderate level, defined by Air Quality Index (AQI) value higher than 50, on the development of ILD in patients with autoimmune diseases including SLE, rheumatoid arthritis (RA) and primary Sjögren’s syndrome (SS).Methods:We used a National Health Insurance Research Database in Taiwan to enroll patients with SLE (International Classification of Diseases (ICD)-9 code 710.0, n=13,211), RA (ICD-9 code 714.0 and 714.30–714.33, n=32,373), and primary SS (ICD-9 code, 710.0, n=15,246) between 2001 and 2013. We identified newly diagnosed ILD cases (ICD-code 515) between 2012 and 2013 and selected age, sex, disease duration and index-year matched (1:4) patients as non-ILD controls. The hourly levels of air pollutants one year prior to the index-date were obtained from 60 air quality monitoring stations across Taiwan, and the air pollutants in the present study consisted of particulate matter <2.5 μm in size (PM2.5), particulate matter <10 μm in size (PM10), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2) and ozone (O3). We used a spatio-temporal model built by a deep-learning mechanism to estimate levels of air pollutants at 374 residential locations based on data of 3 air quality monitoring stations near the location (8). Notably, we used cumulative exposed hours to air pollutants higher than modest level, defined by AQI criteria, given that daily mean level of air pollutants might possibly underestimate the triggered inflammatory effect by a temporary exposure of high-level air pollutant. A conditional logistic regression was used to determine the association between exposure to air pollutant and the development of ILD, adjusting age, gender, Charlson Comorbidity Index (CCI), urbanization, family income, and medications for autoimmune diseases.Results:A total of 272 patients with newly diagnosed ILD were identified among patients with autoimmune diseases, including 39 with SLE, 135 with RA, and 98 with primary SS. We found that the duration of exposure to PM 2.5 higher than modest level was associated with the risk of ILD development in patients with SS (adjOR 1.07, 95% CI 1.01–1.13), and similar trends were also found in patients with SLE (adjOR 1.03, 95% CI 0.95–1.12) and RA (adjOR 1.03, 95% CI 0.99–1.07). Intriguingly, we observed an inverse correlation between the duration of exposure to O3 and the development of ILD in patients with SS (adjOR 0.83, 95% CI 0.70–0.99); however, the finding was not found in patients with SLE (adjOR 1.13, 95% CI 0.92–1.37) and RA (adjOR 0.98, 95% CI 0.87–1.11).Conclusion:In conclusion, we identified that longer exposure to PM2.5 higher than modest level tended to be associated with the development of ILD in patients with autoimmune diseases, mainly SS.References:[1] Araki T, Putman RK, Hatabu H, Gao W, Dupuis J, Latourelle JC, et al. Development and Progression of Interstitial Lung Abnormalities in the Framingham Heart Study. Am J Respir Crit Care Med 2016;194:1514-1522.[2] Tang KT, Tsuang BJ, Ku KC, Chen YH, Lin CH, Chen DY. Relationship between exposure to air pollutants and development of systemic autoimmune rheumatic diseases: a nationwide population-based case-control study. Ann Rheum Dis 2019;78:1288-1291.Disclosure of Interests:Hsin-Hua Chen: None declared, Wen-Cheng Chao: None declared, Yi-Hsing Chen Grant/research support from: Taiwan Ministry of Science and Technology, Taiwan Department of Health, Taichung Veterans General Hospital, National Yang-Ming University, GSK, Pfizer, BMS., Consultant of: Pfizer, Novartis, Abbvie, Johnson & Johnson, BMS, Roche, Lilly, GSK, Astra& Zeneca, Sanofi, MSD, Guigai, Astellas, Inova Diagnostics, UCB, Agnitio Science Technology, United Biopharma, Thermo Fisher, Gilead., Paid instructor for: Pfizer, Novartis, Johnson & Johnson, Roche, Lilly, Astra& Zeneca, Sanofi, Astellas, Agnitio Science Technology, United Biopharma., Speakers bureau: Pfizer, Novartis, Abbvie, Johnson & Johnson, BMS, Roche, Lilly, GSK, Astra& Zeneca, Sanofi, MSD, Guigai, Astellas, Inova Diagnostics, UCB, Agnitio Science Technology, United Biopharma, Thermo Fisher, Gilead., Der-Yuan Chen: None declared, Ching-Heng Lin: None declared


2020 ◽  
Vol 20 (12) ◽  
pp. 7509-7530 ◽  
Author(s):  
Lin Tang ◽  
Martin O. P. Ramacher ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Ship emissions in and around ports are of interest for urban air quality management in many harbour cities. We investigated the impact of regional and local ship emissions on urban air quality for 2012 conditions in the city of Gothenburg, Sweden, the largest cargo port in Scandinavia. In order to assess the effects of ship emissions, a coupled regional- and local-scale model system has been set up using ship emissions in the Baltic Sea and the North Sea as well as in and around the port of Gothenburg. Ship emissions were calculated with the Ship Traffic Emission Assessment Model (STEAM), taking into account individual vessel characteristics and vessel activity data. The calculated contributions from local and regional shipping to local air pollution in Gothenburg were found to be substantial, especially in areas around the city ports. The relative contribution from local shipping to annual mean NO2 concentrations was 14 % as the model domain average, while the relative contribution from regional shipping in the North Sea and the Baltic Sea was 26 %. In an area close to the city terminals, the contribution of NO2 from local shipping (33 %) was higher than that of road traffic (28 %), which indicates the importance of controlling local shipping emissions. Local shipping emissions of NOx led to a decrease in the summer mean O3 levels in the city by 0.5 ppb (∼2 %) on average. Regional shipping led to a slight increase in O3 concentrations; however, the overall effect of regional and the local shipping together was a small decrease in the summer mean O3 concentrations in the city. In addition, volatile organic compound (VOC) emissions from local shipping compensate up to 4 ppb of the decrease in summer O3 concentrations due to the NO titration effect. For particulate matter with a median aerodynamic diameter less than or equal to 2.5 µm (PM2.5), local ship emissions contributed only 3 % to the annual mean in the model domain, while regional shipping under 2012 conditions was a larger contributor, with an annual mean contribution of 11 % of the city domain average. Based on the modelled local and regional shipping contributions, the health effects of PM2.5, NO2 and ozone were assessed using the ALPHA-RiskPoll (ARP) model. An effect of the shipping-associated PM2.5 exposure in the modelled area was a mean decrease in the life expectancy by 0.015 years per person. The relative contribution of local shipping to the impact of total PM2.5 was 2.2 %, which can be compared to the 5.3 % contribution from local road traffic. The relative contribution of the regional shipping was 10.3 %. The mortalities due to the exposure to NO2 associated with shipping were calculated to be 2.6 premature deaths yr−1. The relative contribution of local and regional shipping to the total exposure to NO2 in the reference simulation was 14 % and 21 %, respectively. The shipping-related ozone exposures were due to the NO titration effect leading to a negative number of premature deaths. Our study shows that overall health impacts of regional shipping can be more significant than those of local shipping, emphasizing that abatement policy options on city-scale air pollution require close cooperation across governance levels. Our findings indicate that the strengthened Sulphur Emission Control Areas (SECAs) fuel sulphur limit from 1 % to 0.1 % in 2015, leading to a strong decrease in the formation of secondary particulate matter on a regional scale was an important step in improving the air quality in the city.


This research reflects on the impacts of traffic factors, car acceleration, volume of traffic, road gradient and the resulting sum of air pollutants, with a significant impact on the emissions of the vehicles. The general and detailed urban plans are normally addressed to these factors. Such considerations usually determine the adverse effects of motor vehicles, and environmental hazards, such as air pollution and vibration, which affects highways and bridges. However, the effect of road transport and preparation on the ecosystem is described. The research focuses on climate aspects that can be identified and designed so that all generic proposals can include them. In this study, CO, NO2, TVOC’s and SO2 concentration at multiple sampling sites were screened regularly. The study revealed that air pollutant rates are highly correlated with traffic movement and prevailing gradients. The SO2, NO2, CO and TVOC’s concentrations were very much associated to significant road flow parameters such as traffic elevation, intensity and amount of transport.


2021 ◽  
Vol 237 ◽  
pp. 01037
Author(s):  
Haizhen Zhang ◽  
Jiang Wei

During the epidemic period, Urumqi has been sealed off from the city’s management, just as “suspended” state.From an environmental point of view, the reduction of energy consumption during the closure of the city can be considered as an energy control to study the resulting reduction of atmospheric pollutant concentration changes.In this paper, the monitoring data of air pollutant concentration in the same period of city closure and normal years are compared, and the results show that the air pollutant concentration has decreased in different degrees during the period of city closure.The largest decrease was44.66% for NO2, -40.13% for CO, -36.44% for PM2.5, and the smallest was-2.06% for SO2.Multivariate analysis of variance showed that energy control had a significant effect on the concentration of pollutants during the city closure, for example NO2 (F=128.96, Sig.=0.000), PM10 (F=29.58, Sig=0.000), PM2.5 (F=13.98, Sig.=0.000), CO(F=46.34;Sig.=0.000). Through the analysis of the data, it can be concluded that the air quality of Urumqi in winter is poor and the concentration of pollutants is high. The energy control during the closing period played a positive role in pollutant emission reduction and effectively improved the quality of atmospheric environment.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Jelena Božić ◽  
Predrag Ilić ◽  
Ljiljana Stojanović Bjelić

Noise pollution is one of the main environmental problems today.The main source of environmental noise is traffic noise, especially the noise of road vehicles. The continuing expansion of motorized transport in Europe and Republic of Srpska today, and especially the sharp increase in the use of private cars raises concerns about the health risks.The aim of the case study was to determine the noise level at the location „Borik“ in Banja Luka. The measured values indicate that the noise level in this street is alarming. This paper discusses health and well-being related impacts of traffic noise pollution as well as the economic and social benefits associated with its reduction. It summarizes the latest scientific evidence on the impact of road traffic-induced noise on physical and mental health as a reaction to the high level of traffic noise risks. According to the scientific evidence, road traffic is the main source of noise pollution in Europe that cause harmful health such as impaired communication and disturbed sleep, as well as adverse after effects such as fatigue and decreased performance, annoyance, hearing impairment, ischemic heart disease and hypertension. The effects of unhealthy noise level are reflected on living and working conditions, consequently affecting the economy.This paper highlights economic implications and health benefits linked to cross-functionalities in the process of noise reduction in urbanism, architecture and vehicle design and methods for its evaluation. Cost-benefit analysis would be a pivotal decision-making tool for the city road traffic and land-use decisions. Economic valuation is about identifying all preferences and translating them into a money measure, to create a common denominator for comparing the pros and cons. Any decision implicitly include a money value into health effects. A holistic approach is crucial, considering the various health and economic consequences together.


2021 ◽  
Vol 16 (2) ◽  
pp. 25-35
Author(s):  
Soufiane Boukarta

Abstract This paper explores the impact of balconies on the energy demand required for cooling in the arid climate zone of the city of Adrar, in Algeria. For the purpose to assess several situations of the balconies, we have chosen a parametric method based on a campaign of thermal simulations. The open and eliminated balcony type were selected and characterized by four parameters: the balcony to room ratio, the orientation, the window type, and the balcony position. A set of 100 simulations was selected randomly based on the Monte-Carlo probability technique. The final sample was corrected based on Cook’s distance which gave 85 simulations as a final sample size. A generalized regression model was performed to identify the impact of each parameter. The accuracy of the model is above 97% and the sensitivity analysis shows that the most important factor is the balcony to room ratio which could reduce the energy demand up to 26% followed by the window type (24%), the orientation (8%) and the balcony position (5%). This conclusion stresses the idea of considering the balcony as a passive solution to reduce the cooling energy demand.


Sign in / Sign up

Export Citation Format

Share Document