scholarly journals The long-term water balance (1972–2004) of upland forestry and grassland at Plynlimon, mid-Wales

2007 ◽  
Vol 11 (1) ◽  
pp. 44-60 ◽  
Author(s):  
V. Marc ◽  
M. Robinson

Abstract. This paper reviews research into the hydrological impacts of UK upland forestry and updates the water balance of the Plynlimon research catchments for the period 1972–2004. Comparison of this network of densely instrumented coniferous forest and grassland catchments builds upon previously reported differences in annual evaporation of the two land uses and, most crucially, provides evidence of systematic, age-related, variations in forest evaporation losses over a managed plantation forest cycle. In comparison with the grassland catchment, the additional water use of the 70% forested catchment fell from 250 to 150 mm yr−1 because of increasing forest age; this is equivalent to a decline from 370 mm to 210 mm extra evaporation from a complete forest cover. At present, with up to half of the forest area felled or only recently replanted, the difference in evaporation between the forest and grass catchments is negligible. Knowledge of the period of maximum tree water use may be critically important for the future management of multi-use forests. This is also being investigated by micro-meteorological measurements at the scale of the forest stand using eddy covariance, in conjunction with the long-term catchment monitoring.

2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2301 ◽  
Author(s):  
Yang ◽  
Choi ◽  
Lim

Forests and water are closely related to each other. Thus, forest management is crucial for the sustainable clean water supply. Forest thinning is one of the fundamental forest management practices, as it can change runoff by controlling the density of trees. In this study, the effect of forest thinning on long-term runoff changes was evaluated, based on the long-term rainfall-runoff data of a coniferous plantation forest catchment in Korea. From the double mass curve and Pettitt’s test, a statistically significant increase in runoff rates was identified. A simple linear regression model of the double mass curve can successfully quantify the net effect of forest thinning on the runoff increase. Furthermore, it was also confirmed that forest thinning does not significantly increase the risk of flooding. About ten years after forest thinning, crown closure rates of the coniferous plantation forest reached a level similar to the pre-thinning period, and runoff rates returned to the pre-thinning level, due to forest growth. As a result of this study, a proposed direction for Korea’s forest policy for water resource management is presented for the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Ambrose Mubialiwo ◽  
Charles Onyutha ◽  
Adane Abebe

Changes in the long-term (1948–2016) rainfall and evapotranspiration over Mpologoma catchment were analysed using gridded (0.25° × 0.25°) Princeton Global Forcing data. Trend and variability were assessed using a nonparametric approach based on the cumulative sum of the difference between exceedance and nonexceedance counts of data. Annual and March-May (MAM) rainfall displayed a positive trend (p<0.05), whereas October-December (OND) and June-September rainfall exhibited negative trends with p>0.05 and p<0.05, respectively. Positive subtrends in rainfall occurred in the 1950s and from the mid-2000s till 2016; however, negative subtrends existed between 1960 till around 2005. Seasonal evapotranspiration exhibited a positive trend (p>0.05). For the entire period (1948–2016), there was no negative subtrend in the OND and MAM evapotranspiration. Rainfall and evapotranspiration trends and oscillatory variation in subtrends over multidecadal time scales indicate the need for careful planning of predictive adaptation to the impacts of climate variability on environmental applications which depend on water balance in the Mpologoma catchment. It is recommended that future studies quantify possible contributions of human factors on the variability of rainfall and evapotranspiration. Furthermore, climate change impacts on rainfall and evapotranspiration across the study area should be investigated.


2018 ◽  
Vol 103 (8) ◽  
pp. 2861-2869 ◽  
Author(s):  
Tinna Traustadóttir ◽  
S Mitchell Harman ◽  
Panayiotis Tsitouras ◽  
Karol M Pencina ◽  
Zhuoying Li ◽  
...  

Abstract Context Testosterone increases skeletal muscle mass and strength, but long-term effects of testosterone supplementation on aerobic capacity, or peak oxygen uptake (V̇O2peak), in healthy older men with low testosterone have not been evaluated. Objective To determine the effects of testosterone supplementation on V̇O2peak during incremental cycle ergometry. Design A double-blind, randomized, placebo-controlled, parallel-group trial (Testosterone’s Effects on Atherosclerosis Progression in Aging Men). Setting Exercise physiology laboratory. Participants Healthy men aged ≥ 60 years with total testosterone levels of 100 to 400 ng/dL (3.5 to 13.9 nmol/L) or free testosterone levels < 50 pg/mL (174 pmol/L). Interventions Randomization to 1% transdermal testosterone gel adjusted to achieve serum levels of 500 to 950 ng/dL or placebo applied daily for 3 years. Main Outcome Measures Change in V̇O2peak. Results Mean (±SD) baseline V̇O2peak was 24.2 ± 5.2 and 23.6 ± 5.6 mL/kg/min for testosterone and placebo, respectively. V̇O2peak did not change in men treated with testosterone but fell significantly in men receiving placebo (average 3-year decrease, 0.88 mL/kg/min; 95% CI, −1.39 to 0.38 mL/kg/min; P = 0.035); the difference in change in V̇O2peak between groups was significant (average 3-year difference, 0.91 mL/kg/min; 95% CI, 0.010 to 0.122 mL/kg/min; P = 0.008). The 1-g/dL mean increase in hemoglobin (P < 0.001) was significantly associated with changes in V̇O2peak in testosterone-treated men. Conclusion The mean 3-year change in V̇O2peak was significantly smaller in men treated with testosterone than in men receiving placebo and was associated with increases in hemoglobin. The difference in V̇O2peak change between groups may indicate attenuation of its expected age-related decline; the clinical meaningfulness of the modest treatment effect remains to be determined.


2017 ◽  
Vol 49 (1) ◽  
pp. 72-89 ◽  
Author(s):  
Erik MirHadi Madani ◽  
Per Erik Jansson ◽  
Ian Babelon

Abstract To quantify the role of land cover during a period of climate change, the runoff response is studied for Plynlimon in Wales, UK. The main objective was two-fold: (i) to create a protocol for modeling water balance on a daily basis; and (ii) to describe the extent to which the impact of land-use changes can be identified and supported by the long-term monitoring data of runoff from two neighboring watersheds with different land covers. The process-oriented CoupModel platform was used to set up the model with a well-defined uncertainty for selected parameters. The behavioral ensembles were applied to simulated daily discharge data for the period of 1992–2010 using subjective criteria to reduce the prior 35,000 candidates with a random uniform distribution of 40 parameters. The accepted ensemble was reduced to 100 candidates by accepting the best root-mean-square error (RMSE) on the accumulated residuals during the simulation period. Similar good performance for the entire period and both watersheds was obtained. The differences in interception evaporation accounted for the most important differences between forest and grassland. The obtained residual demonstrated that changes in the forest cover had an impact on the water balance during the first part of the simulation period.


2021 ◽  
Author(s):  
Remko C. Nijzink ◽  
Stan Schymanski

&lt;p&gt;The Budyko-framework is widely used to assess the water balance of catchments, with large catchments worldwide converging to a constrained set of empirical curves. Ongoing research focuses on explaining deviations of catchments from the Budyko-curve, implying that local characteristics, such as hydrological settings and land use, determine an individual curve for each catchment, along which the catchment travels in response to climatic variability. Here we use vegetation optimality to explain convergence on the Budyko-curve and assess if the Vegetation Optimality Model (VOM, Schymanski et al., 2009) and three conceptual hydrological models support the assumption that catchments follow individual Budyko-curves as climate varies.&lt;/p&gt;&lt;p&gt;The VOM optimizes vegetation properties, such as rooting depths and vegetation cover, for maximum Net Carbon Profit (NCP), i.e. the difference between the total amount of CO&lt;sub&gt;2&lt;/sub&gt; assimilated from the atmosphere and the carbon costs for maintenance and respiration of plants. In this sense, the VOM represents vegetation water use as the result of ecological adaptation, while the conceptual hydrological models lump water use into a set of calibration parameters. The following research questions were investigated:&lt;/p&gt;&lt;p&gt;- Does vegetation optimality lead to convergence of catchments on the Budyko-curve?&lt;/p&gt;&lt;p&gt;- Does modelled catchment response to changing precipitation follow a catchment-specific Budyko-curve?&lt;/p&gt;&lt;p&gt;The VOM was applied at five flux tower sites, as well as 36 additional points, along the North Australian Tropical Transect, following a strong precipitation gradient from north to south, and six other catchments in Australia. Beside the VOM, three conceptual hydrological models were applied to the Australian catchments for comparison. In a final step, these hydrological models were run for a selection of catchments in the contiguous United States to generalize the results from Australia.&lt;/p&gt;&lt;p&gt;For each site, the vegetation parameters of the VOM were optimized for maximum NCP, while the conceptual models were calibrated to reproduce observed streamflow. The simulated water balances were used to generate individual Budyko-curves for each site and model run. Subsequently, rainfall was stepwise increased or decreased and the models were re-run to test if each site would stay on its curve. In a second step, the vegetation was re-optimized in the VOM to simulate vegetation response to the new precipitation and the resulting water balance was again plotted on the Budyko-curve.&lt;/p&gt;&lt;p&gt;The individual Budyko-curves were consistently different for the different precipitation amounts, indicating that modelled responses do not follow a catchment-specific curve. Conversely, if vegetation was re-optimized in the VOM for each rainfall scenario, the different scenarios converged to a single curve for each study site. In other words, adjusting the vegetation to maximize the NCP made the study sites converge back to the initial Budyko-curve. This indicates that convergence onto a Budyko-curve and tracking along a catchment-specific Budyko-curve may not be due to physical constraints, as commonly assumed, but the result of biological adaptation to the environment.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Schymanski, S.J., Sivapalan, M., Roderick, M.L., Hutley, L.B., Beringer, J., 2009. An optimality&amp;#8208;based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resources Research 45. https://doi.org/10.1029/2008WR006841&lt;/p&gt;


2017 ◽  
Author(s):  
Daniel Mercado-Bettín ◽  
Juan F. Salazar ◽  
Juan Camilo Villegas

Abstract. Global changes in forest cover have been related to major scientific and social challenges. There are important uncertainties about the potential effects of ongoing forest loss on continental water balances. Here we present an observation-based analysis of long-term water balance partitioning (precipitation divided into evaporation and runoff) in 22 large basins of the world, whereby we identify two partitioning patterns likely related to biophysical mechanisms that depend on the presence and abundance of forests. In less forested basins, evaporation dominates water balance and, as forest cover increases, this dominance of evaporation over runoff is reduced. When forest is the predominant cover, both components account for nearly half of precipitation in the long-term water balance. The distinction between these two patterns is not fully explained by differences between water- and energy-limited environments, but requires consideration of other biophysical properties that affect precipitation and its conversion into evaporation and runoff. Our results indicate that forest cover is an effective descriptor of basin attributes that are relevant for characterizing long-term water balance partitioning in large basins of the world. Further, our results provide insights to understanding and predicting the potential consequences of forest loss on continental water availability, a critical determinant for multiple ecological and societal processes.


Sign in / Sign up

Export Citation Format

Share Document