Modeling the impact of 1.5 and 2.0◦C global warming on the hydrology of the Faleme river basin (West Africa)

Author(s):  
Mamadou Lamine Mbaye ◽  
Khadidiatou Sy ◽  
Bakary Faty ◽  
Saidou Moustapha Sall

<p>Climate change raises many questions about the future availability of water resources in West Africa. Indeed, water in this region is a fundamental element for many socio-economic activities. This study proposes an assessment of the impact of climate change on the hydrology of the Faleme basin, located in the Sahel (West Africa). The applied methodology consists in calibrating and validating the hydrological model GR4J before simulating the future evolution of flows in this catchment under of 1.5 and 2°C global warming.  Observed rainfall, potential evapotranspiration (PET), and river flows were used for calibration and validation of the GR4J model. Furthermore, output of three regional climate models (DMI-HIRHAM, SHIM-RCA, and BCCR-WRF) were bias corrected with the cumulative distribution function-transform (CDF-t) before used as input to the GR4J hydrological model to simulate future flows at the watershed scale. During the historical period the results shows a good correspondence between the simulated flows and those observed during calibration and validation, with Nash–Sutcliffe efficiencies (NSE) greater than 70%. Projections show a general increase in mean annual temperature and PET; a decrease in mean annual rainfall is projected by the DMI-HIRHAM, BCCR-WRF models and the overall mean; while a slight increase is noted with the SMHI-RCA model. As for future flows, a downward trend in annual and monthly average flows is expected in the two sub-basins of the Faleme (Kidira and Gourbassi) with input from the DMI-HIRHAM, BCCR-WRF models and the overall mean; however,  the GR4J forced by the SMHI-RCA model output, project increased flows. Furthermore, the decrease is more pronounced at Gourbassi sub-basin than at Kidira sub-basin. Thus, recommendations were made to mitigate the likely impacts of climate change on socio-economic activities that use water resources.</p>

2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


2008 ◽  
Vol 12 (1) ◽  
pp. 239-255 ◽  
Author(s):  
E. McBean ◽  
H. Motiee

Abstract. In the threshold of the appearance of global warming from theory to reality, extensive research has focused on predicting the impact of potential climate change on water resources using results from Global Circulation Models (GCMs). This research carries this further by statistical analyses of long term meteorological and hydrological data. Seventy years of historical trends in precipitation, temperature, and streamflows in the Great Lakes of North America are developed using long term regression analyses and Mann-Kendall statistics. The results generated by the two statistical procedures are in agreement and demonstrate that many of these variables are experiencing statistically significant increases over a seven-decade period. The trend lines of streamflows in the three rivers of St. Clair, Niagara and St. Lawrence, and precipitation levels over four of the five Great Lakes, show statistically significant increases in flows and precipitation. Further, precipitation rates as predicted using fitted regression lines are compared with scenarios from GCMs and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are higher than GCM predictions for Lakes Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted. Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes particularly for the precipitation in the Great Lakes Basin may be demonstrating influences arising from global warming and climate change.


2019 ◽  
Vol 20 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Angelos Alamanos ◽  
Stamatis Sfyris ◽  
Chrysostomos Fafoutis ◽  
Nikitas Mylopoulos

Abstract The relationship between water abstraction and water availability has turned into a major stress factor in the urban exploitation of water resources. The situation is expected to be sharpened in the future due to the intensity of extreme meteorological phenomena, and socio-economic changes affecting water demand. In the city of Volos, Greece, the number of water counters has been tripled during the last four decades. This study attempts to simulate the city's network, supply system and water demand through a forecasting model. The forecast was examined under several situations, based on climate change and socio-economic observations of the city, using meteorological, water pricing, users' income, level of education, family members, floor and residence size variables. The most interesting outputs are: (a) the impact of each variable in the water consumption and (b) water balance under four management scenarios, indicating the future water management conditions of the broader area, including demand and supply management. The results proved that rational water management can lead to remarkable water conservation. The simulation of real scenarios and future situations in the city's water demand and balance, is the innovative element of the study, making it capable of supporting the local water utility.


Author(s):  
zhen wang ◽  
Meixue Yang ◽  
xuejia wang ◽  
lizhen cheng ◽  
guoning wan ◽  
...  

Climate changes may pose challenges to water management. Simulation and projection of climate-runoff processes through hydrological models are essential means to assess the impact of global climate change on runoff variations. This study focuses on the upper Taohe River Basin which is an important water sources for arid and semi-arid regions in Northwest China. In order to assess the impacts of environmental changes, outputs from a regional climate model and the SWAT hydrological model were used to analyze the future climate change scenarios to water resources quantitatively. The examined climate changes scenarios results showed that average annual temperature from 2020 to 2099 in this area exhibits a consistent warming trend with different warming rates, at rates of 0.10°C/10a, 0.20°C /10a and 0.54°C /10a under RCP2.6, RCP4.5 and RCP8.5(Representative Concentration Pathways, RCPs), The value of precipitation experiences different trends under different emission scenarios. Under the RCP2.6, average precipitation would decrease at a rate of 3.69 mm/10a, while under the RCP4.5 and RCP8.5, it would increase at rates of 4.97 mm/10a and 12.28 mm/10a, respectively. The calibration and validation results in three in-site observations (Luqu, Xiabagou and Minxian) in the upper Taohe River Basin showed that SWAT hydrological model is able to produce an acceptable simulation of runoff at monthly time-step. In response to future climate changes, projected runoff change would present different decreasing trends. Under RCP2.6, annual average runoff would experience a progress of fluctuating trend, with a rate of-0.6×108m3 by 5-year moving average method; Under the RCP4.5 and RCP8.5, annual average runoff would show steadily increasing trends, with rates of 0.23×108m3 and 0.16×108m3 by 5-year moving average method. The total runoff in the future would prone to drought and flood disasters. Overall, this research results would provide a scientific reference for reginal water resources management on the long term.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2516
Author(s):  
Yoonji Kim ◽  
Jieun Yu ◽  
Kyungil Lee ◽  
Hye In Chung ◽  
Hyun Chan Sung ◽  
...  

Highly concentrated precipitation during the rainy season poses challenges to the South Korean water resources management in efficiently storing and redistributing water resources. Under the new climate regime, water resources management is likely to become more challenging with regards to water-related disaster risk and deterioration of water quality. To alleviate such issues by adjusting management plans, this study examined the impact of climate change on the streamflow in the Bocheongcheon basin of the Geumgang river. A globally accepted hydrologic model, the HEC-HMS model, was chosen for the simulation. By the calibration and the validation processes, the model performance was evaluated to range between “satisfactory” and “very good”. The calibrated model was then used to simulate the future streamflow over six decades from 2041 to 2100 under RCP4.5 and RCP8.5. The results indicated significant increase in the future streamflow of the study site in all months and seasons over the simulation period. Intensification of seasonal differences and fluctuations was projected under RCP 8.5, implying a challenge for water resources managers to secure stable sources of clean water and to prevent water-related disasters. The analysis of the simulation results was applied to suggest possible local adaptive water resources management policy.


2013 ◽  
Vol 17 (2) ◽  
pp. 565-578 ◽  
Author(s):  
J. A. Velázquez ◽  
J. Schmid ◽  
S. Ricard ◽  
M. J. Muerth ◽  
B. Gauvin St-Denis ◽  
...  

Abstract. Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000) and a future (2041–2070) period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.


2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


2012 ◽  
Vol 9 (11) ◽  
pp. 12395-12433 ◽  
Author(s):  
T. C. Yang ◽  
C. Chen ◽  
C. M. Kuo ◽  
H. W. Tseng ◽  
P. S. Yu

Abstract. This study aims at assessing the impact of climate change on drought risk in a water resources system in Southern Taiwan by integrating the weather generator, hydrological model and simulation model of reservoir operation. Three composite indices with multi-aspect measurements of reservoir performance (i.e. reliability, resilience and vulnerability) were compared by their monotonic behaviors to find a suitable one for the study area. The suitable performance index was then validated by the historical drought events and proven to have the capability of being a drought risk index in the study area. The downscaling results under A1B emission scenario from seven general circulation models were used in this work. The projected results show that the average monthly mean inflows during the dry season tend to decrease from the baseline period (1980–1999) to the future period (2020–2039); the average monthly mean inflows during the wet season may increase/decrease in the future. Based on the drought risk index, the analysis results for public and agricultural water uses show that the occurrence frequency of drought may increase and the severity of drought may be more serious during the future period than during the baseline period, which makes a big challenge on water supply and allocation for the authorities of reservoir in Southern Taiwan.


Author(s):  
Naga Coulibaly ◽  
Talnan Jean Honoré Coulibaly ◽  
Ziyanda Mpakama ◽  
Issiaka Savané

In the context of climate change in West Africa characterized by a reduction of precipitation, this study was conducted to evaluate the impact of climate change on water resources from now to the end of the 21st century in the transboundary watershed of the Sassandra River shared by Guinea and Côte d’Ivoire. Historical and future climate (Representative Concentration Pathways or RCPs 4.5 and 8.5 scenarios) data were projected with the model. The Abdus Salam ICTP RegCM4 was used. The hydrological modeling of the river basin was carried out with the conceptual hydrological model, GR2M. This model is a monthly time steps model that allows the assessment of the discharge of the Sassandra River for each climate scenario according to the 2030 (2021–2040), 2050 (2041–2060), 2070 (2061–2080), and 2090 (2081–2100) horizons. The results showed a reduction of the annual discharge when compared to the baseline (1961–1980). For the RCP 4.5, the observed values went from –1.2% in 2030 to –2.3% in 2070 and rose to –2.1% in 2090. Concerning the RCP 8.5, we saw a variation from –4.2% to –7.9% in the 2030 and 2090 horizons, respectively. With the general decrease of rainfall in West Africa, it is appropriate to assess the impact on water resources on the largest rivers (Niger, Gambia, and Senegal) that irrigate the Sahelo-Saharian zone.


Sign in / Sign up

Export Citation Format

Share Document